Cryptanalysis with a cost-optimized FPGA cluster

Jan Pelzl, Horst Görtz Institute for IT-Security, Germany

hg Horst-Görtz Institut für IT Sicherheit

UCLA IPAM Workshop IV

Special Purpose Hardware for Cryptography: Attacks and Applications

December 4 – 8, 2006

Special thanks to

Tim Güneysu, Christof Paar, Christian Schleiffer (Horst Görtz Institute, University of Bochum)

Gerd Pfeiffer, Manfred Schimmler (University of Kiel, hardware layout)

Jean-Jacques Quisquater, François-Xavier Standaert (Universitè Catholique de Louvain, DES-core)

Xilinx (generous donations of Spartan3 devices)

Security vs. Cost

- Design of the COPACOBANA FPGA Cluster
 - Application 1: DES Brute-Force
 - Application 2: Attack on ECC
 - Conclusion and Outlook

Symmetric crypto

- (hopefully) only brute-force attack possible
- "secure key lengths": 112...256 bits (attack compl. 2¹¹²...2²⁵⁶)
- but in practice wide variety of keys: AES, DES, RC4, A5, …
- attack complexities: 2⁵⁶...2²⁵⁶
- security of hash functions (MD5, SHA-1, ...)?

Asymmetric crypto (RSA, ECC, DL)

- algorithmic attacks (e.g., factorization) dictate larger keys
- "secure key lengths": > 2048 bits (> 160 bits for ECC)
- key lengths in practice:
 - RSA, DL: 1024 ... 4096 bits
 - ECC: 160 ... 256 bits
- attack complexities: 2⁸⁰ (?) ... 2¹²⁸

für IT Sicherhe

Security and Computation

- Traditional: security of ciphers = complexity of attacks
- However: what really matters are the **costs** of an attack
- State-of-the-art:
 - < 2⁵⁰ steps can be done with PC networks (more or less conveniently)
 - > 2⁸⁰ steps are very hard with today's technology (probably also for intelligence agencies

feasible		?	infeasible
0 bit	50 b	oits 80) bits

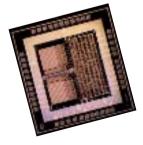
Major question: cost of attack for ciphers with 50...80 bits security? (RSA1024, ECC160, SHA-1, DES, A5, ...)

Cryptanalysis with cost-optimized FPGA clusters

Introduction: Massive Computing

Supercomputers (Cray, SG, SRC...)

- General (= complex & expensive) parallel computing architectures
- fast I/O, large memory, easy to program
- poor cost-performance ratio for (most) cryptanalysis


Distributed computing (conventional PCs)

- Dedicated clients in clusters, or
- Using PC's idle time: E.g., SETI@home (BOINC framework)
- problem of motivation, confidentiality issues

Special-purpose hardware

- ASIC Application Specific Integrated Circuits (high NRE)
- FPGA Field Programmable Gate Arrays (low NRE)
- best cost-performance ratio

Cost-performance ratio of DES¹): PC vs. FPGA

• DES encryptions / decryptions per second

Pentium4@3GHz: $\approx 2 \times 10^6$ price per device (retail): $\in 80$

Xilinx XC3S1000@100MHz $\approx 400 \times 10^{6}$ price per device (retail): $\in 40$

Cost-performance ratio differs by 2-3 orders of magnitude!

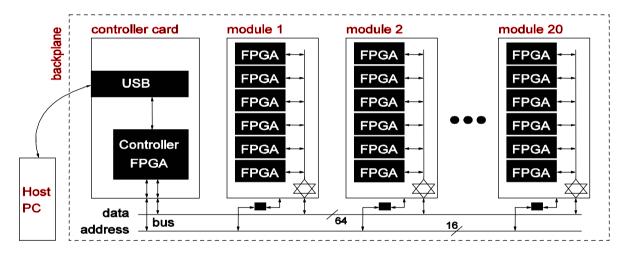
Based on actual implementations is software and hardware

Security vs. Cost

- Design of the COPACOBANA FPGA Cluster
 - Application 1: DES Brute-Force
 - Application 2: Attack on ECC
 - Conclusion and Outlook

What's in a name?

Copacobana


COPACOBANA: Design Principles

- Ability to perform ≥ 2⁵⁶ crypto operations
- Re-programmable: applicable to many ciphers (other apps.?)
- Strictly optimized cost-performance ratio:
 - off-the-shelf hardware (low-cost)
 - many logic resources (performance)
- Modular design
- < 10,000 € (including fabrication and material cost)</p>
- **Parallel** architecture, based on 120 low-cost FPGAs
- Sacrifices
 - no global memory
 - no high-speed communication ("only" Mbit/s)

COPACOBANA: Basic Design

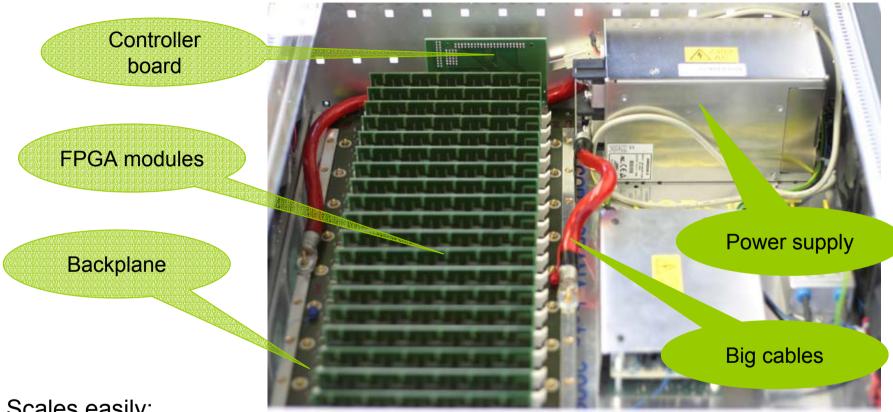
Modular design:

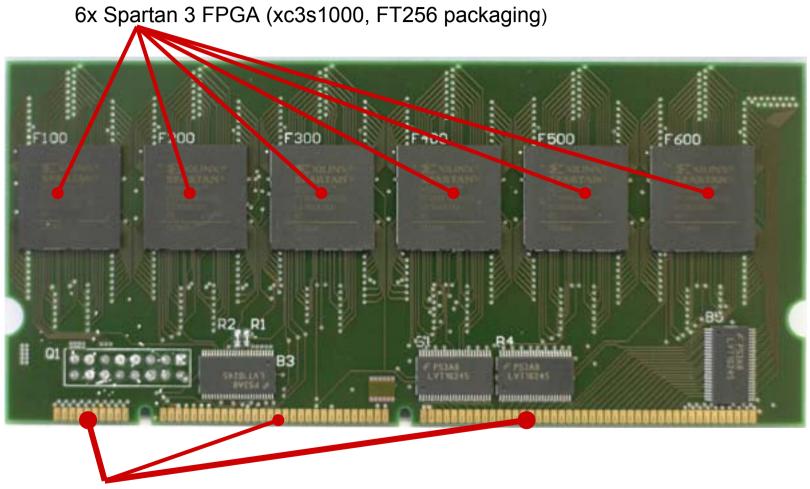
- 1. Backplane
- 2. FPGA modules (each with 6 low-cost FPGAs)
- 3. Controller card with USB/ Ethernet interface

Horst-Görtz Institu für IT Sicherhe

- Easily extendable:
 - Up to 20 FPGA modules with 6 FPGAs each
 - Connect multiple COPACOBANAs via USB/ Ethernet

COPACOBANA: Alpha Prototype


COPACOBANA: Beta Version


COPACOBANA: What's inside?

- Scales easily:
- 20 FPGA modules/machine (120 FPGAs/ machine)
- multiple machines via USB/ Ethernet

COPACOBANA: FPGA Modules

Horst-Görtz Institu für IT Sicherhe

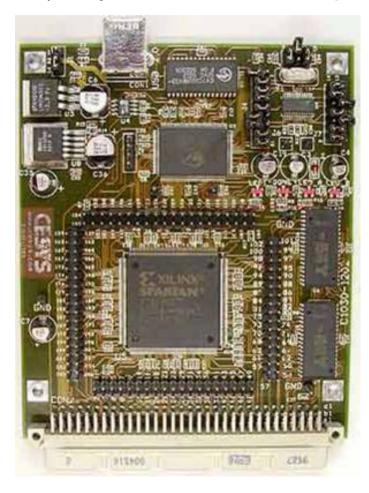
Connection to backplane (64-bit data bus)

Cryptanalysis with cost-optimized FPGA clusters

COPACOBANA: FPGA Modules

Functionality:

- 6x Spartan-3 FPGAs (xc3s1000) per module
 - BGA packaging (FT256)
 - Internal clock rate up to 300 MHz
- Addressing:
 - HW decoded adress of FPGA modules (GAL on backplane)
 - HW decoded adress of single FPGA
 - Further addresses (5-bit) for FPGA-internal processing
- 64-bit data connection to backplane (bi-directional)
- 64-bit local bus (per module)
- Host cryptanalytical applications, e.g.,
 - Key search engines for DES
 - ECM engines
 - Pollard Rho engines

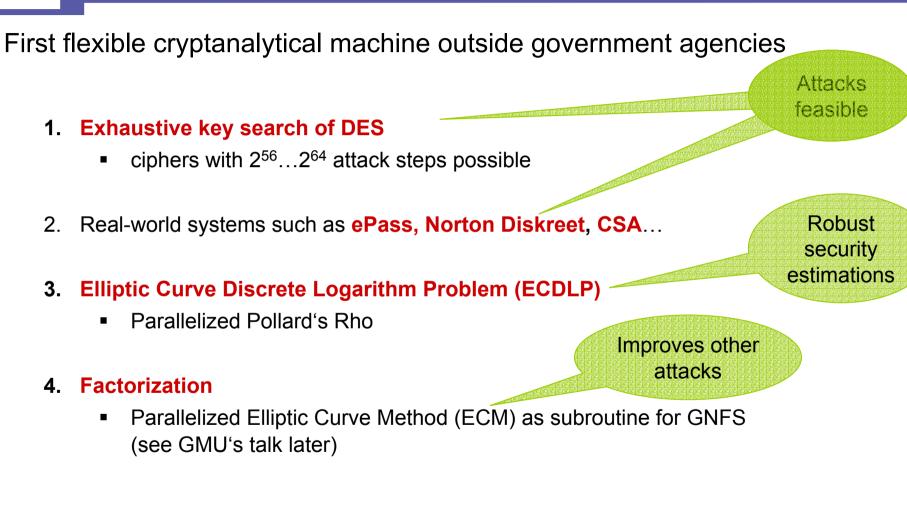


COPACOBANA: Controller Module

Proprietary board (Cesys USB2FPGA w/ Spartan II)

COPACOBANA: Controller Module

Functionality:


- Programming of FPGAs:
 - Individual (download per FPGA)
 - Concurrent (download to all/ subset FPGAs)
- Communication with FPGAs:
 - Initialization of FPGA logic
 - Polling of FPGAs
- Communication with host-PC:
 - Redirecting results
 - Simple pre- and post processing
- New controller being developed (Ethernet, MicroBlaze, ...)

COPACOBANA: Applications

Security vs. Cost

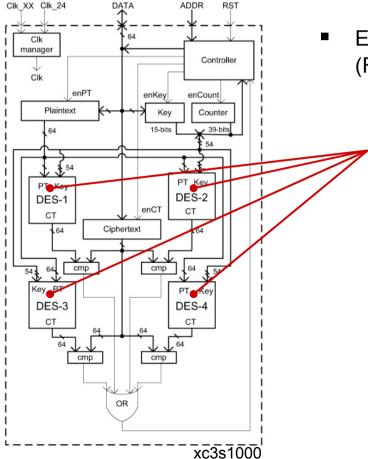
- Design of the COPACOBANA FPGA Cluster
 - Application 1: DES Brute-Force
 - Application 2: Attack on ECC
 - Conclusion and Outlook

Cryptanalytical Applications: Attacks on DES

Data Encryption Standard (DES):

- Block cipher with 56-bit key
- Expired standard, but still used (legacy products, ePass, Norton Diskreet, ...)

Exhaustive key search (conventional technology):


- Check 2⁵⁵ keys on average
- PC (e.g., Pentium4@3GHz) ≈ 2 mio. keys/sec
- Average key search with one PC $\approx 2^{34}$ sec = 545 years!

Can do much better with special-purpose hardware!

Attacks on DES

FPGA-based attacks on the Data Encryption Standard (DES):

- Exhaustive key search (FPGA based):
 - 4 completely pipelined DES engines per FPGA (courtesy of the crypto group of UCL)
 - one key per clock cycle per DES engine
 - One FPGA@100MHz: 400 mio. keys/ sec

Attacks on DES

- COPACOBANA: average key search of
 8.7 days @ 100 MHz
- Somewhat higher clock rates possible
- FPGA vs. PC (average key search in 8.7 days)
 - 22,865 Pentium 4 (€ 3.6 million incl. overhead)

or

- COPACOBANA (total cost € 9000 incl. overhead)

Attacks on DES

Host-PC application (console output):

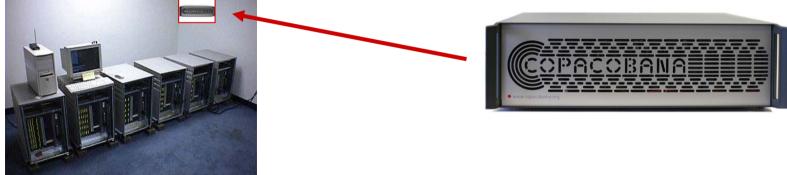
<pre>ES exhaustive key search rogramming all PPCA: ype in plaintext (hex) ms ype in subspace (816383): ES engine (8100): laintext : 134134314143444 iphertext: 36ca864f9359f49b zy : 80008080808486c80 xpansion stage: 18 DIMM modu ES hey search started</pre>	55 1 3 les with 198 FPGAs				
FPGA 0	FPGA 1	FPGA 2	FPGA 3	FPGA 4	FPGA 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 2.73x (NS 1) 2 2.73x (NS 7) 2 2.73x (NS 7) 2 2.73x (NS 13) 2 2.73x (NS 13) 2 2.73x (NS 17) 2 2.73x (NS 31) 2 2.73x (NS 31) 2 2.73x (NS 43) 2 2.73x (NS 43) 2 2.74x (NS 61) 2 2.74x (NS 67) 2 2.74x (NS 73) 2 2.74x (NS 73) 2 2.74x (NS 91) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	/ 2.73x (MS 2) / 2.73x (MS 2) / 2.73x (MS 14) / 2.73x (MS 20) / 2.73x (MS 20) / 2.73x (MS 20) / 2.73x (MS 22) / 2.73x (MS 22) / 2.73x (MS 32) / 2.73x (MS 58) / 2.74x (MS 58) / 2.74x (MS 56) / 2.74x (MS 74) / 2.74x (MS 104) / 2.74x (MS 104) / 2.74x (MS 104) / 2.74x (MS 104)	2 2.73x (HS 3) 2 2.73x (HS 3) 2 2.73x (HS 15) 2 2.73x (HS 21) 2 2.73x (HS 22) 2 2.73x (HS 27) 2 2.73x (HS 27) 2 2.73x (HS 45) 2 2.74x (HS 51) 2 2.74x (HS 51) 2 2.74x (HS 51) 2 2.74x (HS 51) 2 2.74x (HS 63) 2 2.74x (HS 65) 2 2.74x (HS 65) 2 2.74x (HS 75) 2 2.74x (HS 75) 2 2.74x (HS 75) 2 2.74x (HS 75) 2 2.74x (HS 93) 2 2.74x (HS 105) - 2.74x (HS 105)	2.73x (NS 4) 2.73x (NS 18) 2.73x (NS 18) 2.73x (NS 22) 2.73x (NS 22) 2.73x (NS 28) 2.73x (NS 48) 2.73x (NS 48) 2.73x (NS 48) 2.73x (NS 58) 2.74x (NS 58) 2.74x (NS 58) 2.74x (NS 58) 2.74x (NS 64) 2.74x (NS 64) 2.74x (NS 74) 2.74x (NS 18) 2.74x (NS 186) 2.74x (NS 186)	/ 2.73x (38 5) / 2.73x (38 11) / 2.73x (38 11) / 2.73x (38 17) / 2.73x (38 23) / 2.73x (38 29) / 2.73x (38 29) / 2.73x (38 35) / 2.73x (38 41) / 2.73x (38 42) / 2.74x (38 53) / 2.74x (38 53) / 2.74x (38 57) / 2.74x (38 71) / 2.74x (38 71) / 2.74x (38 95) / 2.74x (38 181) / 2.74x (38 181) / 2.74x (38 181) / 2.74x (38 181) / 2.74x (38 181)
<pre>fine elapsed: 0 days, 0 hour Avring in hey solespaces 0 t Active FPDA::188 Kate: 43.2 billion hoys per >>> Key found in module 10, >>> Uerifying key interval: >>> Key recovery in 300 second >>> Second Seco</pre>	a 197 (of 16384) mecond PPGG 1 at internal va	1un - C2 e 19899990 e 8c 86 e 88 1a 6 5 Million Million (5 10), a 1914	ij nah		

2006-1998 = 8 years \approx **5** x 1.5 years Prediction: \$250,000 / 2⁵ \approx \$8,000 (close to actual \$10,000) Cryptanalysis with cost-optimized FPGA clusters

A Historical Perspective: The Power of Moore's Law

Breaking DES in days:

Moore' Law: 50% cost reduction / 1.5 years


DeepCrack, 1998

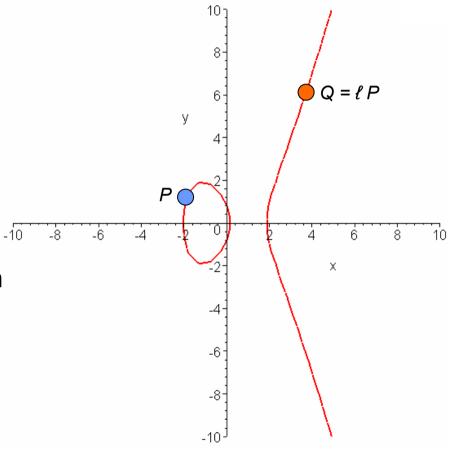
\$250,000

COPACOBANA, 2006

\$10,000

Security vs. Cost

- Design of the COPACOBANA FPGA Cluster
 - Application 1: DES Brute-Force
 - Application 2: Attack on ECC
 - Conclusion and Outlook


Cryptanalysis with cost-optimized FPGA clusters

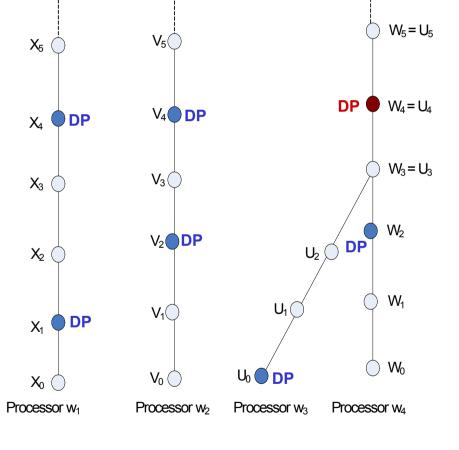
ECDL Problem

- Many real-world applications rely on hardness of ECDLP
 - ECDSA,
 - ECDH,

 Let P be a generator. Determine discrete logarithm { of a point Q such that

$$Q = \ell P.$$

Generic ECDLP Attacks

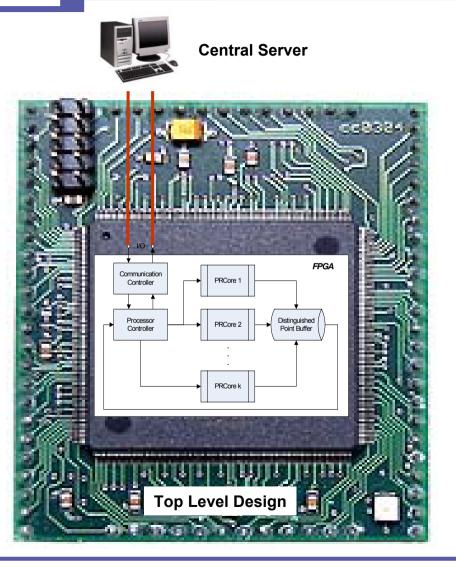

If parameters are chosen with care, only generic attacks are possible

- 1. Naïve Search: Sequentially test P, 2P, 3P, 4P,...
 - Brute force attack is infeasible if $\#E \ge 2^{80}$
- 2. Shank's Baby-Step-Giant-Step Method
 - Complexity in time AND memory of about $\sqrt{\#E}$
- **3.** Pollard's Rho method (ρ)
 - Most efficient algorithm for general ECDLP
 - Complexity of $\sqrt{\#E}$

Note: All attacks are **exponential** in the bit length of the group order

Cryptanalysis with cost-optimized FPGA clusters

Multi Processor Pollard Rho (MPPR)


- Best known attack against general ECC
- Proposed by van Oorschot/Wiener in 1999
- Processors have individual search paths for "Distinguished Points" (DP)
- DP are stored at central server
- Duplicate DP = ECDLP solution

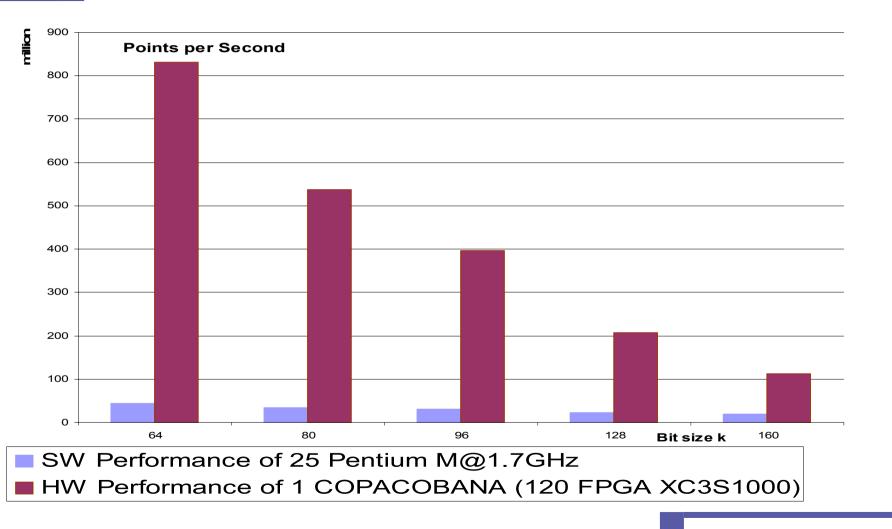
Parallelization idea: speed up linear in number of employed processors

für IT Sicherhe

Colliding DP trails of multiple processors w_i

Hardware Implementation (Top Layer)

Neither


- fastest, nor
- smallest
- implementations is needed, but
- Time-Area Optimum.
- Each FPGA: multiple point engines (PRCore) each computing a separate trail.
- All cores store distinguished points in a shared point buffer.
- Buffer locking & host communication are needed to transfer DPs to the server.
- FPGA to Host communication via serial (for debugging) or proprietary bus interface.

Cryptanalysis with cost-optimized FPGA clusters

für IT Sicherhe

ECDLP Attack Comparison: SW vs. HW for \$10.000

ECDLP Attacks for US\$ 1 million

Bit size k	PC Cluster	COPACOBANA (estimate)	ASIC (estimate)
80	40.6 h	2.58 h	-
96	8.04 d	14.8 h	-
112 (SEC-1)*	6.48 y	262 d	1.29 d
128	1.94 x10 ³ y	213 y	1.03 y
160	1.51 x 10 ⁸ y	2.58 x 10 ⁷ y	1.24 x 10⁵ y

* SECG (STANDARDS FOR EFFICIENT CRYPTOGRAPHY)

Security vs. Cost

- Design of the COPACOBANA FPGA Cluster
 - Application 1: DES Brute-Force
 - Application 2: Attack on ECC
 - Conclusion and Outlook

Conclusion – COPACOBANA

- Results
 - DES in 8.6 days (possibly 50% speedup in near future)
 - ECC-p163 attack currently \approx \$ 1 trillion (\$10¹²)
 - Moore's Law: ECC 160 will stay secure for ≈ 20 years
 - ECC-112 (SEC-1 standard): insecure!
 - possibly real-time attack against ePass
- Many marginally weak ciphers are breakable
- "Strong" ciphers (AES, RSA-1024, ECC-163, …) not breakable, but robust estimates by extrapolation of COPACOBANA results
- Several future applications are currently investigated
- Pictures, papers, and much more at www.copacobana.org
- We are looking for partners for other applications

Outlook

Future work includes

- Optimization of the COPACOBANA platform:
 - harden communication framework (almost done)
 - analyze SECG 80, 112, 128
 - implement parallel ECM for COPACOBANA
- Optimization of VHDL implementations
- Optimization of hardware platform (beyond prototype)
- Hardware based attacks demand for re-evaluation of security of, e.g., ECC
- Further applications: Smith-Waterman algorithm for scanning DNA sequences against databases

