
R
IV

Y
E

R
A

/A
P

I
S

c
iE

n
g

in
e
s

S
o
ft
w

a
re

D
iv

is
io

n

Released version

SCIENGINES
massively parallel computing

RIVYERA API

SciEngines RIVYERA Host-API
Documentation
Development User Guide, Host-API (Java)

Version 1.95.01

SciEngines GmbH

Revision: 1363 1.95.01 March 9, 2022

RIVYERA API RIVYERA/API
Revision: 1363 1.95.01 March 9, 2022

SciEngines RIVYERA Host-API
Documentation
Development User Guide, Host-API (Java)

Version 1.95.01

SciEngines GmbH

SciEngines GmbH

Am-Kiel-Kanal 2

24106 Kiel

Germany

Public

Released version

Prepared for SciEngines GmbH, Am-Kiel-Kanal 2, 24106 Kiel, Germany

Under No Contract Number

RIVYERA/API ii

Abstract: This introduction offers a brief overview of the SciEngines RIVYERA computer. It

describes the physical and structural details from the programmers’ point of view.

The main purpose of the RIVYERA API is to interface with single and multiple FPGAs in a

massively parallel architecture as simply and easily as possible. We intend to provide an

infrastructure for your FPGA designs which allows you to leverage the benefits of a massively

parallel architecture without raising the complexity of your design.

Therefore, we provide a simple interface hiding the idiosyncratic implementation details of

the physical layers while permitting a high-level view of your RIVYERA computer.

Disclaimer: Any information contained in this document is confidential, and only intended for reception and use

by the company or authority who bought a SciEngines product. Drawings, pictures, illustrations and estimations

are nonbinding and for illustration purposes only. If you are not the intended recipient, please return the document

to the sender and delete any copies afterwards. In this case any copying, forwarding, printing, disclosure and use

is strictly prohibited. The information in this document is provided for use with SciEngines GmbH (’SciEngines’)

products. No license, express or implied, to any intellectual property associated with this document or such products

is granted by this document. All products described in this document whose name is prefaced by ’COPACOBANA’,

’RIVYERA’, ’SciEngines’ or ’SciEngines enhanced’ (’SciEngines products’) are owned by SciEngines GmbH (or

those companies that have licensed technology to SciEngines) and are protected by trade secrets, copyrights or

other industrial property rights. Products described in this document may still be subject to enhancements and

further developments. Therefore SciEngines reserves the right to change this document at any time without prior

notice. Although all data reported have been carefully checked before publishing, SciEngines GmbH is not liable

for any error or missing information. Your purchase, license and/or use of SciEngines products shall be subject to

SciEngines’ then current sales terms and conditions.

Trademarks:

The following are trademarks of SciEngines GmbH in the EU, the USA and other countries:

• SciEngines,

• SciEngines - Massively Parallel Computing,

• COPACOBANA,

• RIVYERA

Trademarks of other companies:

• Xilinx, Kintex and Vivado are registered trademarks of Xilinx Inc. in the USA and other countries.

• All other trademarks mentioned in this document are the property of their respective owners.

RIVYERA/API iii

Contents

Figures and Tables... iv

1 General .. 1

1.1 Basic Information ... 1

1.1.1 General ideas of parallel programming 1

1.1.2 Concept of using SciEngines RIVYERA 1

1.1.3 API version information.. 3

1.1.4 RIVYERA API Addressing Scheme .. 5

1.2 RIVYERA API Structure... 7

1.2.1 RIVYERA API Register Paradigm ... 7

1.2.2 RIVYERA API Routing Strategies ... 7

1.3 Java API Introduction ... 9

1.3.1 Machine addressing.. 9

1.3.2 Autonomous FPGA writes .. 9

2 Namespace Documentation .. 10

2.1 Package com .. 10

Packages... 10

2.2 Package com.sciengines.. 10

Packages... 10

2.3 Package com.sciengines.rivyera .. 10

Packages... 10

2.4 Package com.sciengines.rivyera.api ... 10

Packages... 10

Classes ... 10

2.5 Package com.sciengines.rivyera.api.types ... 10

Packages... 10

Classes ... 10

2.6 Package com.sciengines.rivyera.api.types.exceptions 11

Classes ... 11

3 Class Documentation .. 12

3.1 SciEngines_API Class Reference .. 12

Static Public Member Functions ... 12

3.1.1 Detailed Description... 12

3.1.2 Member Function Documentation ... 12

3.2 SciEngines_API_Const Class Reference ... 13

Static Public Attributes.. 13

3.2.1 Member Data Documentation .. 14

3.3 SeAddress Class Reference ... 16

Public Member Functions .. 16

Public Attributes ... 16

3.3.1 Detailed Description... 16

3.3.2 Constructor & Destructor Documentation.................................. 17

3.3.3 Member Function Documentation ... 18

RIVYERA/API iv

3.3.4 Member Data Documentation .. 18

3.4 SeApiException Class Reference... 18

Public Member Functions .. 18

3.4.1 Detailed Description... 18

3.4.2 Constructor & Destructor Documentation.................................. 19

3.4.3 Member Function Documentation ... 19

3.5 SeApiFailedException Class Reference... 19

Public Member Functions .. 19

3.5.1 Constructor & Destructor Documentation.................................. 19

3.5.2 Member Function Documentation ... 19

3.6 SeApiFileErrorException Class Reference ... 20

Public Member Functions .. 20

3.6.1 Constructor & Destructor Documentation.................................. 20

3.6.2 Member Function Documentation ... 20

3.7 SeApiInvalidAddressException Class Reference 20

Public Member Functions .. 20

3.7.1 Constructor & Destructor Documentation.................................. 20

3.7.2 Member Function Documentation ... 20

3.8 SeApiInvalidMachineException Class Reference 21

Public Member Functions .. 21

3.8.1 Constructor & Destructor Documentation.................................. 21

3.8.2 Member Function Documentation ... 21

3.9 SeApiLicenseErrorException Class Reference.. 21

Public Member Functions .. 21

3.9.1 Constructor & Destructor Documentation.................................. 21

3.9.2 Member Function Documentation ... 22

3.10 SeApiMachineInUseException Class Reference...................................... 22

Public Member Functions .. 22

3.10.1 Constructor & Destructor Documentation.................................. 22

3.10.2 Member Function Documentation ... 22

3.11 SeApiMachineNotAvailableException Class Reference 22

Public Member Functions .. 23

3.11.1 Constructor & Destructor Documentation.................................. 23

3.11.2 Member Function Documentation ... 23

3.12 SeApiReadTimeoutException Class Reference....................................... 23

Public Member Functions .. 23

3.12.1 Constructor & Destructor Documentation.................................. 23

3.12.2 Member Function Documentation ... 23

3.13 SeApiWriteTimeoutException Class Reference 24

Public Member Functions .. 24

3.13.1 Constructor & Destructor Documentation.................................. 24

3.13.2 Member Function Documentation ... 24

3.14 SeControllerInfo Class Reference .. 24

Public Member Functions .. 24

3.14.1 Detailed Description... 24

3.14.2 Member Function Documentation ... 24

3.15 SeFPGAInfo Class Reference ... 25

Public Member Functions .. 25

3.15.1 Detailed Description... 25

3.15.2 Member Function Documentation ... 25

RIVYERA/API v

3.16 SeFPGAType Enum Reference ... 26

Public Member Functions .. 26

Public Attributes ... 26

3.16.1 Detailed Description... 26

3.16.2 Member Function Documentation ... 26

3.16.3 Member Data Documentation .. 26

3.17 SeOptions Class Reference.. 27

Classes ... 27

Public Member Functions .. 27

3.17.1 Constructor & Destructor Documentation.................................. 27

3.17.2 Member Function Documentation ... 27

3.18 SeProgInfo Class Reference... 28

Public Member Functions .. 28

3.18.1 Detailed Description... 28

3.18.2 Member Function Documentation ... 28

3.19 SeOptions.SeRoutingMethod Enum Reference 29

Public Attributes ... 29

3.19.1 Member Data Documentation .. 29

3.20 SeSlotInfo Class Reference .. 29

Public Member Functions .. 29

3.20.1 Detailed Description... 29

3.20.2 Member Function Documentation ... 29

3.21 SeOptions.SeWriteBehavior Enum Reference .. 30

Public Attributes ... 30

3.21.1 Member Data Documentation .. 30

RIVYERA/API vi

Figures and Tables

Figures

Figure 1. Partitioning of a problem into host- and machine-parts 2

Figure 2. Design flow for multi-component software systems..................................... 3

Figure 3. VHDL-API taking care of user design’s I/O .. 7

Figure 4. Routing of a host-initiated write .. 8

Figure 5. Routing of an FPGA-initiated write .. 8

Tables

RIVYERA/API 1

1 General

1.1 Basic Information

This introduction offers a brief overview of the SciEngines RIVYERA computer. It describes

the physical and structural details from the programmers’ point of view.

The main purpose of the RIVYERA API is to interface with single and multiple FPGAs in a

massively parallel architecture as simply and easily as possible. We intend to provide an

infrastructure for your FPGA designs which allows you to leverage the benefits of a massively

parallel architecture without raising the complexity of your design.

Therefore, we provide a simple interface hiding the idiosyncratic implementation details of

the physical layers while permitting a high-level view of your RIVYERA computer.

1.1.1 General ideas of parallel programming

Traditionally, software has been written for serial computation. There are two historic reasons

for serial computation concepts: one is that thinking in a serial, causal way is easy for most

humans, the other is that computers started mechanically. Still during the early 1980s, the

most common way to input data or programs was via punched tape or magnetic tape drives.

Most of today’s computers are von Neumann architectures. Named after the Hungarian

mathematician John von Neumann who first stated the general requirements for an electronic

computer in his 1945 papers. Since then, virtually all computers have followed this basic

design, which differed from earlier computers programmed through ’hard wiring’. Standard

CPUs are designed to provide a good instruction mixture for almost all commonly used

algorithms. Therefore, for a class of target algorithms they cannot be as effective as possible

in terms of design freedom. Most software is intended to be run on such general purpose

computers having one single central processing unit (CPU). A problem is split into a discrete

series of instructions, each instruction is executed one after the other and only a single

instruction may be executed at a time.

The SciEngines approach follows a massively parallelized architectural concept. It provides

a large number of Field Programmable Gate Arrays (FPGAs), which are able to implement

a huge number of individual processing elements. In the simplest case, FPGA parallel

computing is the simultaneous use of multiple resources like processing elements to solve

large computational problems. The RIVYERA API allows to interface hundreds of such

processing elements per FPGA. To solve a complex task, it is split into discrete parts that

can be solved concurrently. Each part is computed in its own processing element. Unlike

a classical CPU, the discrete parts are further split to a series of instructions which are

executed in highly problem-optimized dedicated hardware. This hardware task is coded in

the hardware description language VHDL. The instructions from each part are executed

simultaneously on different processing elements and FPGAs.

General computational problems usually demonstrate characteristics such as the ability to

be split into discrete pieces of work that can be solved simultaneously and execute multiple

program instructions at any moment in time. Therefore, problems are solved in less time with

SciEngines RIVYERA than with a single computational resource like a CPU.

1.1.2 Concept of using SciEngines RIVYERA

To efficiently use SciEngines RIVYERA, the computational problem or algorithm is split in two

general parts (see figure 1). One part is the strict software or frontend part which remains on

the integrated host PC inside the RIVYERA computer. The other part is the core algorithm

RIVYERA/API 2

which is accelerated by using the FPGAs on a single RIVYERA computer or even on multiple

RIVYERA computers. The FPGAs programmable by the user are referred to as UserFPGAs.

FPGA

FPGA

FPGA

computational
problem

010101010
101010101
010101000

.

.

.

111101010
101011101
010101111

.

.

.

FPGA configurationSoftware executable

Host PC

FPGA

Figure 1. Partitioning of a problem into host- and machine-parts

In general, the software part could be seen as a frontend for the user or as a data interface to

provide the resources for the FPGA accelerated parts. Also, simple pre- or post-computations

are ideal for this part. The RIVYERA Host-API offers a rich set of interface functions which

can be easily used by existing code.

CAUTION

In a massively parallel architecture the flow control should always be

a point to think about. To achieve the best speedup, the flow control

should be done within the Machine-API, e.g. by designing a special

FPGA entity. Compared to FPGA architectures, PC architectures react

much slower, because incoming events always have to be analyzed by

schedulers, memory managers and other OS components. Therefore, the

programmer always adds an artificial delay when allowing the FPGAs to

wait for a PC reaction. Flow control in your PC software using the Host-API

is still fast and quick to implement but might not result in the speedup your

design is capable of.

The second part implements the acceleration, flow control and multiple processing elements

to solve the computational problem. The RIVYERA Machine-API offers useful functions

which easily allows you to implement the key parts of the algorithm.

To create the host part and the machine part of your application, different software tools

are useful. On the host side, high level languages such as C or C++ and even Java are

addressed by the RIVYERA Host-API. In order to design efficient processing elements, VHDL

or Verilog is recommended. Implementations using cross-language compilers like SystemC

are possible, but will most likely not result in the expected speedups.

In order to move any suitable computational problem to the RIVYERA computer, the com-

putational problem should be partitioned into the two mentioned parts (see figure 2). For

the integrated frontend on the host PC, the usage of any suitable compiler and development

environment will create adequate results. The recommended tools are Eclipse for the IDE

and the Gnu C Compiler (gcc) or any comparable Unix based compiler in order to create

executable code on the integrated RIVYERA Host PC 1. Machines shipped with Unix based

operating systems, like Linux, usually provide a pre-installed gcc or equivalent compiler. All

available RIVYERA computers provide templates for several programming languages like

C/C++ or Java.

1RIVYERA API has been tested with Linux/gcc. Other compilers may work but are not officially supported.

RIVYERA/API 3

FPGA

computational
problem

010101010
101010101
010101000

.

.

.

111101010
101011101
010101111

.

.

.

Host PC

FPGA

C Code

VHDL

Library

IEEE

Library

VHDL

Code

SciEngines API
SciEngines
Host-API

SciEngines
Machine-API

Host C
compiler
e.g. gcc

VHDL
Compiler

VHDL
Syntheses

ISE

SciEngines

Host-API

SciEngines

Machine-API

SciEngines

Machine-API

problem partitioning

Figure 2. Design flow for multi-component software systems

For FPGA design and implementation, the recommended development environments for the

differing RIVYERA architectures are:

• RIVYERA S6-LX150: XILINX® ISE® development environment.

• RIVYERA X-32G1: INTEL® QUARTUS® development environment.

Most third party compilers and IDEs might work as there are no other templates included

except the ones provided for ISE® and QUARTUS®. Using the RIVYERA Machine-API allows

simple interfacing of your VHDL-implemented processing elements.

1.1.3 API version information

The SciEngines API follows a simple versioning scheme. All API versions are denoted

aa.bb.cc s with the symbols as follows.

• aa: Major API version

Major API version changes indicate that the complete code structure will have to be

changed if migrating. A changing Major version often indicate complete restructurings of

the APIs code and therefore have a very long interval.

• bb: Minor API version

A change in the API minor version will be triggered by new features.

• cc: API Service Pack (sometimes abbreviated with SP)

The API Service Pack will increase if there have been bug fixes.

RIVYERA/API 4

• s: API revision string

The revision string can be an arbitrary string annotating the version. For example, "RC1"

as a revision string may indicate that this is the first release candidate of a new API

version.

Within this scheme, there is one specific caveat: All versions with bb ≥ 90 are pre-release

versions of a higher major version. For example, API 1.90.00 was the first alpha version of

API 2.00.00.

RIVYERA/API 5

1.1.4 RIVYERA API Addressing Scheme

The addressing scheme in the RIVYERA API is straightforward. Every single data word

travels through the machine containing two addresses. One of these (the so called target)

contains information where it should be sent to, the other one (so called source) tells the

receiver where this word originated. Each address is built from multiple components which

will be explained below.

Physical Address Components

To gain highest possible flexibility, every FPGA in the whole RIVYERA is uniquely identifiable

and can therefore be addressed individually. The addressing scheme contains two physical

fields: Slot and FPGA address. These fields are derived from the physical machine structure.

Every RIVYERA computer physically consists of one or more FPGA Cards, each of which

is plugged into a backplane slot. All plugged cards are numbered from index 0 to index

CARD_COUNT-1, retaining their physical order. The index of each card is called its slot index.

Multiple FPGAs may reside on each card. Similar to the cards in one system, the FPGAs

are numbered in order, starting at index 0 as well. However, all FPGAs on one card share

the same slot index. Using both the slot and FPGA index, every FPGA may be addressed

uniquely throughout a whole RIVYERA computer.

Address Wildcards

Physical Address Components may be replaced by wildcards, such as ADDR_SLOT_ALL

or ADDR_FPGA_ALL. Using these wildcards, it is possible to create broadcast- or very

simple multicast-addresses. For example slot=ADDR_SLOT_ALL, fpga=0 refers to the

first FPGA on all cards, whereas slot=0, fpga=ADDR_FPGA_ALL selects all FPGAs on

slot 0. slot=ADDR_SLOT_ALL, fpga=ADDR_FPGA_ALL of course selects every FPGA

on every slot.

Virtual Address Components

The addressing scheme is completed by two more fields: command and register. Both fields

do not have any physical means but are only useful for communication. The command field

may contain one of read or write. Write commands do not imply a dedicated behavior on

the FPGA side, whereas read commands assume a proper answer. Please see section

2.5.1 (Responding to Read Requests) in the VHDL-documentation for more information. The

register address field MAY be used to create multiple data streams. It can be considered as

a stream identifier. As both sent and received words always contain information about their

source and target register the user can leverage a very powerful feature to create and design

his very own data-flows. A very common way to use the register field is to employ different

types of streams for each register. For example, consider an FPGA design which has two

calculation cores which have to be fed with independent data. In this example, it would make

sense to use register 0 for core 1 and register 1 for core 2. Please note that using multiple

registers does not affect communication bandwidth.

Target Addresses

A target address specifies where a given data word is to be delivered to and how the target

shall interpret the incoming word. For example, incoming words with api_i_tgt_cmd_out

= CMD_WR tells the target FPGA that the sender does not expect an answer. Whenever

RIVYERA/API 6

api_i_tgt_cmd_out = CMD_RD your user logic is expected to send a number of words

specified in api_i_data_out back to the sender.

Please note that as a receiver, you will not see the target slot and FPGA fields of an incoming

word, because these are given implicitly by data receipt.

Source Addresses

Source addresses contain information about the source of an incoming data word. While

a source’s slot and FPGA information is straightforward, the command and register fields

are more complex to understand. In general, both source command and source register

do not have to be taken into account. Whenever the user FPGA receives data from the

host interface, the source command will be CMD_WR and the source register will be set to

0x0. However, you are free to implement designs that effectively use these fields within

inter-FPGA communication, for example to tell the receiver to send responds to a defined

target address.

RIVYERA/API 7

1.2 RIVYERA API Structure

In the RIVYERA architecture all data uses the same transport channel and in order to

maintain the correctness of order, data frames are not allowed to overtake each other. These

specific features have to be kept in mind when designing your code for RIVYERA.

1.2.1 RIVYERA API Register Paradigm

User Code

User Control UnitMachine-API

Input Register

Output Register

General Ports

R
I
V
Y
E
R
A

B
U
S

Figure 3. VHDL-API taking care of user design’s I/O

Figure 3 shows the block diagram of one example of an FPGA design. The host interface

provided by the Machine-API is instantiated once and connects to an addressed FPGA.

This design paradigm will be modeled by the Machine-API and, accordingly, by the Host-API.

• Input Register

The SciEngines RIVYERA API enables the user to send and receive streamed data to

and from an FPGA. Using this mechanism, it is possible to send data from host to one

or multiple FPGAs as well as transfer data between FPGAs and send data from FPGAs

to the host. A stream consists of individual 64 bit data words which are transferred in

order. This means: words written earlier to an FPGA arrive earlier than words which are

written later.

• Output Register

The SciEngines RIVYERA API provides a single register which can be used to send

data. Whenever the user wants to send data to either the host PC or any other (possibly

multiple) FPGA(s), he may provide data to this output register.

Both Input and Output Register are realized as BlockRAM FIFOs.

1.2.2 RIVYERA API Routing Strategies

SciEngines API will support multiple routing schemes, so the RIVYERA can be adapted

according to each user’s needs. Currently, the only supported routing scheme is Smart

Routing. All routing strategies are strictly deterministic. Therefore, every sent word takes

exactly the same path through the RIVYERA, depending on its physical source and target

address. SciEngines API does not avoid links with high traffic.

Smart Routing

The Smart Routing strategy, which is enabled by default, will determine the shortest route

through the RIVYERA for every sent word. It will make full usage of the machine’s architecture

with its card-to-card shortcuts.

RIVYERA/API 8

Broadcasted transfers will automatically be spread in both communication directions to

reduce the worst-case latency. The following illustrations show one FPGA card with 8 FPGAs.

The sender of a word is always colored in bright green, whereas the links that are used to

pass a word are highlighted red. Please note that exactly the same routing method applies

to FPGA cards with different numbers of FPGAs.

Figure 4 depicts the route of a word written to all FPGAs by the Host application. The

host-connected Service FPGA duplicates the word and sends it to its User FPGAs using

both ring directions. All FPGAs but numbers 3 and 4 do both: forwarding the incoming word

to their successors and forwarding it to the internal user User Logic. The FPGAs 3 and 4

forward the word to their own user logic, but do not forward it to the next FPGA. Therefore,

no FPGA gets the word twice.

Backplane Interconnect

Host Interface

FPGA
5

FPGA
4

FPGA
3

FPGA
2

FPGA
6

FPGA
7

FPGA
0

FPGA
1

Svc
FPGA

Figure 4. Routing of a host-initiated write

The same principle of routing applies for FPGA ↔ FPGA transfers as shown in Figure 5. If

an FPGA issues a broadcast, then it is broadcasted in both directions and it is assured by

the API that no FPGA gets the same word twice.

Backplane Interconnect

Host Interface

FPGA
5

FPGA
4

FPGA
3

FPGA
2

FPGA
6

FPGA
7

FPGA
0

FPGA
1

Svc
FPGA

Figure 5. Routing of an FPGA-initiated write

RIVYERA/API 9

1.3 Java API Introduction

The RIVYERA Host-API forms one endpoint of host-machine communication. It models the

Input/Output register paradigm as introduced in section 1.2.1. Input registers of a FPGA can

be filled using se_write(), and the FPGA output register is read using se_read(). Reading

an output register has to be distinguish between active and passive reading. When issuing

an active read request, the user’s FPGA design will be actively asked to send some data,

whereas passive reads only seek through words that are already written to the host.

The programming of FPGAs is done by se_program(), which takes a bitfile to download it to

the selected FPGAs.

The SciEngines RIVYERA API is completed with management functions such as se_-

getSlotCount(), se_getSlotInfo() and se_getFPGAInfo() which makes it possible to figure out

the whole machine’s setup without having physical access to it.

1.3.1 Machine addressing

The addressing of machine components in general is straightforward using the class SeAd-

dress. The user needs to specify an element by its index, so addr.fpga = 0 means to

address the first FPGA. The only complex feature is Multi-/Broadcasting mode. Whenever

you specify the slot or fpga fields of SeAddress as SE_ADDR_SLOT_ALL or or SE_ADDR_-

FPGA_ALL respectively you tell the API to address all of these components (so addr.fpga

= SE_ADDR_FPGA_ALL would address all FPGAs). This way you can create Multicast

addresses (e.g. addr.slot = SE_ADDR_SLOT_ALL, addr.fpga = 0 for the first

FPGA on all cards), or true Broadcast addresses (addr.slot = SE_ADDR_SLOT_ALL,

addr.fpga = SE_ADDR_FPGA_ALL).

1.3.2 Autonomous FPGA writes

There might be some cases in which the FPGAs need to communicate with the host software

without being requested to. For convenience, these FPGA write actions will be called

autonomous writes. Whenever your design needs to make use of this communication

method, the Host-API method se_waitForData() comes in handy. When invoked, this method

listens for write interrupts. It does return if it recognizes that data is received from the

specified controller. Use SE_ADDR_CONTR_ALL as the controller index when waiting for

data from any controller is desired. Once the method has returned, it provides the user with

information of the write source, so the user can invoke se_read() with passive operation

mode in order to read the incoming data.

RIVYERA/API 10

2 Namespace Documentation

2.1 Package com

Packages

• package sciengines

2.2 Package com.sciengines

Packages

• package rivyera

2.3 Package com.sciengines.rivyera

Packages

• package api

2.4 Package com.sciengines.rivyera.api

Packages

• package types

Classes

• class SciEngines_API

• class SciEngines_API_Const

2.5 Package com.sciengines.rivyera.api.types

Packages

• package exceptions

Classes

• class SeAddress

• class SeControllerInfo

• class SeFPGAInfo

• enum SeFPGAType

• class SeOptions

• class SeProgInfo

• class SeSlotInfo

RIVYERA/API 11

2.6 Package com.sciengines.rivyera.api.types.exceptions

Classes

• class SeApiException

• class SeApiFailedException

• class SeApiFileErrorException

• class SeApiInvalidAddressException

• class SeApiInvalidMachineException

• class SeApiLicenseErrorException

• class SeApiMachineInUseException

• class SeApiMachineNotAvailableException

• class SeApiReadTimeoutException

• class SeApiWriteTimeoutException

RIVYERA/API 12

3 Class Documentation

3.1 SciEngines_API Class Reference

Static Public Member Functions

• static int se_getMachineCount ()

• static void se_allocMachine (int machine) throws SeApiException

• static void se_allocMachine (int machine, SeOptions options) throws SeApiException

• static void se_freeMachine (int machine) throws SeApiException

• static long se_read (int machine, SeAddress addr, ByteBuffer payload, long size, int

mode, long timeout) throws SeApiException

• static long se_write (int machine, SeAddress addr, ByteBuffer payload, long size, long

timeout) throws SeApiException

• static void se_program (int machine, SeAddress addr, String filename, long timeout)

throws SeApiException

• static void se_deprogram (int machine, SeAddress addr) throws SeApiException

• static SeAddress se_waitForData (int machine, int controller, long timeout) throws Se-

ApiException

• static int se_getSlotCount (int machine) throws SeApiException

• static SeSlotInfo se_getSlotInfo (int machine, int slot) throws SeApiException

• static SeProgInfo se_getProgInfo (int machine, int slot) throws SeApiException

• static int se_getFPGACount (int machine, int slot) throws SeApiException

• static SeFPGAInfo se_getFPGAInfo (int machine, SeAddress addr) throws SeApi-

Exception

• static int se_getControllerCount (int machine) throws SeApiException

• static SeControllerInfo se_getControllerInfo (int machine, int controller) throws SeApi-

Exception

• static double se_getTemperature (int machine, int slot) throws SeApiException

• static double se_getMaxTemperature (int machine, int slot) throws SeApiException

• static void se_flush (int machine, int controller, long timeout) throws SeApiException

• static void se_comment (String str)

• static String se_type2str (SeFPGAType type)

3.1.1 Detailed Description

This is the central class of the SciEngines API. It contains all methods used to communicate

with a SciEngines device.

Author

Jost Bissel

Daniel Siebert

3.1.2 Member Function Documentation

RIVYERA/API 13

static int se_getMachineCount () [static]

static void se_allocMachine (int machine) throws SeApiException [static]

static void se_allocMachine (int machine, SeOptions options) throws

SeApiException [static]

static void se_freeMachine (int machine) throws SeApiException [static]

static long se_read (int machine, SeAddress addr, ByteBuffer payload, long size,

int mode, long timeout) throws SeApiException [static]

static long se_write (int machine, SeAddress addr, ByteBuffer payload, long size,

long timeout) throws SeApiException [static]

static void se_program (int machine, SeAddress addr, String filename, long timeout

) throws SeApiException [static]

static void se_deprogram (int machine, SeAddress addr) throws SeApiException

[static]

static SeAddress se_waitForData (int machine, int controller, long timeout) throws

SeApiException [static]

static int se_getSlotCount (int machine) throws SeApiException [static]

static SeSlotInfo se_getSlotInfo (int machine, int slot) throws SeApiException

[static]

static SeProgInfo se_getProgInfo (int machine, int slot) throws SeApiException

[static]

static int se_getFPGACount (int machine, int slot) throws SeApiException

[static]

static SeFPGAInfo se_getFPGAInfo (int machine, SeAddress addr) throws

SeApiException [static]

static int se_getControllerCount (int machine) throws SeApiException [static]

static SeControllerInfo se_getControllerInfo (int machine, int controller) throws

SeApiException [static]

static double se_getTemperature (int machine, int slot) throws SeApiException

[static]

static double se_getMaxTemperature (int machine, int slot) throws SeApiException

[static]

static void se_flush (int machine, int controller, long timeout) throws

SeApiException [static]

static void se_comment (String str) [static]

RIVYERA/API 14

• static final int SE_API_VERSION_MAJOR = SciEngines_API_Const_JNI.SE_API_VER-

SION_MAJOR

• static final int SE_API_VERSION_MINOR = SciEngines_API_Const_JNI.SE_API_VER-

SION_MINOR

• static final int SE_API_VERSION_SP = SciEngines_API_Const_JNI.SE_API_VERSIO-

N_SP

• static final String SE_API_VERSION_REVISION = SciEngines_API_Const_JNI.SE_AP-

I_VERSION_REVISION

• static final int SE_TIMEOUT_INFINITE = SciEngines_API_Const_JNI.SE_TIMEOUT_I-

NFINITE

• static int SE_ADDR_FPGA_ALL = SciEngines_API_Const_JNI.SE_ADDR_FPGA_ALL

• static int SE_ADDR_SLOT_ALL = SciEngines_API_Const_JNI.SE_ADDR_SLOT_ALL

• static int SE_ADDR_CONTR_ALL = SciEngines_API_Const_JNI.SE_ADDR_CONTR_-

ALL

• static int SE_ADDR_FPGA_HOST = SciEngines_API_Const_JNI.SE_ADDR_FPGA_H-

OST

• static int SE_ADDR_REG_EOT = SciEngines_API_Const_JNI.SE_ADDR_REG_EOT

• static int SE_LENGTH_ADDR_SLOT = SciEngines_API_Const_JNI.SE_LENGTH_AD-

DR_SLOT

• static int SE_LENGTH_ADDR_FPGA = SciEngines_API_Const_JNI.SE_LENGTH_AD-

DR_FPGA

• static int SE_LENGTH_ADDR_REG = SciEngines_API_Const_JNI.SE_LENGTH_ADD-

R_REG

• static int SE_LENGTH_CMD = SciEngines_API_Const_JNI.SE_LENGTH_CMD

• static int SE_READ_ACTIVE = SciEngines_API_Const_JNI.SE_READ_ACTIVE

• static int SE_READ_PASSIVE = SciEngines_API_Const_JNI.SE_READ_PASSIVE

• static int SE_READ_REQUEST = SciEngines_API_Const_JNI.SE_READ_REQUEST

3.2.1 Member Data Documentation

final int SE_API_VERSION_MAJOR = SciEngines_API_Const_JNI.SE_API_VERSION_-

MAJOR [static]

Major API version.

final int SE_API_VERSION_MINOR = SciEngines_API_Const_JNI.SE_API_VERSION_-

MINOR [static]

Minor API version.

final int SE_API_VERSION_SP = SciEngines_API_Const_JNI.SE_API_VERSION_SP

[static]

API Service Pack.

final String SE_API_VERSION_REVISION = SciEngines_API_Const_JNI.SE_API_VER-

SION_REVISION [static]

API Revision.

RIVYERA/API 15

final int SE_TIMEOUT_INFINITE = SciEngines_API_Const_JNI.SE_TIMEOUT_INFINITE

[static]

Constant used whenever a method shall wait infinitely.

int SE_ADDR_FPGA_ALL = SciEngines_API_Const_JNI.SE_ADDR_FPGA_ALL

[static]

Constant used as wildcard for FPGA index. This constant may be used for writing to multiple

FPGAs or programming multiple FPGAs at once. E.g. slot = 1, fpga = ADDR_FPGA_ALL

specifies a Multicast to every FPGA in slot 1.

int SE_ADDR_SLOT_ALL = SciEngines_API_Const_JNI.SE_ADDR_SLOT_ALL

[static]

Constant used as wildcard for slot index. This constant may be used for writing to multiple

slots or programming multiple slots at once. E.g. slot = SE_SLOT_ALL, fpga = 3 specifies a

Multicast to each FPGA 3 in every slot.

int SE_ADDR_CONTR_ALL = SciEngines_API_Const_JNI.SE_ADDR_CONTR_ALL

[static]

Constant used as wildcard for controller index. This constant may be used for se_waitForData

to wait on all controllers for incoming data.

int SE_ADDR_FPGA_HOST = SciEngines_API_Const_JNI.SE_ADDR_FPGA_HOST

[static]

Constant used whenever you need to comminucate to the host. E.g. slot = 0, fpga =

SE_ADDR_FPGA_HOST initiates a transfer to the host interface at slot 0.

int SE_ADDR_REG_EOT = SciEngines_API_Const_JNI.SE_ADDR_REG_EOT

[static]

Constant used for ending a transfer. This can only be used from within user FPGA.

int SE_LENGTH_ADDR_SLOT = SciEngines_API_Const_JNI.SE_LENGTH_ADDR_SL-

OT [static]

Length of the slot address field in bits.

int SE_LENGTH_ADDR_FPGA = SciEngines_API_Const_JNI.SE_LENGTH_ADDR_FP-

GA [static]

Length of the fpga address field in bits.

RIVYERA/API 16

int SE_LENGTH_ADDR_REG = SciEngines_API_Const_JNI.SE_LENGTH_ADDR_REG

[static]

Length of the register address field in bits.

int SE_LENGTH_CMD = SciEngines_API_Const_JNI.SE_LENGTH_CMD [static]

Length of the command field in bits.

int SE_READ_ACTIVE = SciEngines_API_Const_JNI.SE_READ_ACTIVE [static]

Constant used to invoke active read mode.

int SE_READ_PASSIVE = SciEngines_API_Const_JNI.SE_READ_PASSIVE

[static]

Constant used to invoke passive read mode.

int SE_READ_REQUEST = SciEngines_API_Const_JNI.SE_READ_REQUEST

[static]

Constant used to invoke a read request.

3.3 SeAddress Class Reference

Public Member Functions

• SeAddress (int contr, int slot, int fpga, int reg)

• String toString ()

Public Attributes

• int fpga = 0

• int reg = 0

• int slot = 0

• int contr = 0

3.3.1 Detailed Description

A structure containing all necessary information to address a machine element. In order to

create a Multi-/Broadcast address, use SciEngines_API_Const#SE_ADDR_CONTR_ALL,

SciEngines_API_Const#SE_ADDR_SLOT_ALL, SciEngines_API_Const#SE_ADDR_FPG-

A_ALL on any of the components.

Author

Jost Bissel

Daniel Siebert

RIVYERA/API 17

3.3.2 Constructor & Destructor Documentation

SeAddress (int contr, int slot, int fpga, int reg)

Creates an SeAddress instance to address an FPGA

RIVYERA/API 18

Parameters

contr Controller index

slot Slot index

fpga FPGA index

reg FPGA’s register index

3.3.3 Member Function Documentation

String toString ()

3.3.4 Member Data Documentation

int fpga = 0

The index of the target FPGA.

int reg = 0

The index of the target register.

int slot = 0

The index of the target slot.

int contr = 0

The index of the target controller.

3.4 SeApiException Class Reference

Inheritance diagram for SeApiException:

Public Member Functions

• SeApiException (int errorCode, String message)

• int getErrorCode ()

3.4.1 Detailed Description

Class representing exceptions that might occur while running SciEngines API. This is the

superclass for all SeApiExceptions. To catch all SeApiExceptions, you may simply catch this

superclass.

Author

Jost Bissel

RIVYERA/API 19

3.4.2 Constructor & Destructor Documentation

SeApiException (int errorCode, String message)

Creates a new instance using the given error code and message.

Parameters

errorCode Integer specifying the error.

message String specifying the error.

3.4.3 Member Function Documentation

int getErrorCode ()

Returns the error code of this exception.

Returns

Exception’s error code.

3.5 SeApiFailedException Class Reference

Inheritance diagram for SeApiFailedException:

Collaboration diagram for SeApiFailedException:

Public Member Functions

• SeApiFailedException ()

• SeApiFailedException (String message)

• int getErrorCode ()

3.5.1 Constructor & Destructor Documentation

SeApiFailedException ()

SeApiFailedException (String message)

3.5.2 Member Function Documentation

int getErrorCode () [inherited]

Returns the error code of this exception.

Returns

Exception’s error code.

RIVYERA/API 20

3.6 SeApiFileErrorException Class Reference

Inheritance diagram for SeApiFileErrorException:

Collaboration diagram for SeApiFileErrorException:

Public Member Functions

• SeApiFileErrorException ()

• SeApiFileErrorException (String message)

• int getErrorCode ()

3.6.1 Constructor & Destructor Documentation

SeApiFileErrorException ()

SeApiFileErrorException (String message)

3.6.2 Member Function Documentation

int getErrorCode () [inherited]

Returns the error code of this exception.

Returns

Exception’s error code.

3.7 SeApiInvalidAddressException Class Reference

Inheritance diagram for SeApiInvalidAddressException:

Collaboration diagram for SeApiInvalidAddressException:

Public Member Functions

• SeApiInvalidAddressException ()

• SeApiInvalidAddressException (String message)

• int getErrorCode ()

3.7.1 Constructor & Destructor Documentation

SeApiInvalidAddressException ()

SeApiInvalidAddressException (String message)

3.7.2 Member Function Documentation

RIVYERA/API 21

int getErrorCode () [inherited]

Returns the error code of this exception.

Returns

Exception’s error code.

3.8 SeApiInvalidMachineException Class Reference

Inheritance diagram for SeApiInvalidMachineException:

Collaboration diagram for SeApiInvalidMachineException:

Public Member Functions

• SeApiInvalidMachineException ()

• SeApiInvalidMachineException (String message)

• int getErrorCode ()

3.8.1 Constructor & Destructor Documentation

SeApiInvalidMachineException ()

SeApiInvalidMachineException (String message)

3.8.2 Member Function Documentation

int getErrorCode () [inherited]

Returns the error code of this exception.

Returns

Exception’s error code.

3.9 SeApiLicenseErrorException Class Reference

Inheritance diagram for SeApiLicenseErrorException:

Collaboration diagram for SeApiLicenseErrorException:

Public Member Functions

• SeApiLicenseErrorException ()

• SeApiLicenseErrorException (String message)

• int getErrorCode ()

3.9.1 Constructor & Destructor Documentation

RIVYERA/API 22

SeApiLicenseErrorException ()

SeApiLicenseErrorException (String message)

3.9.2 Member Function Documentation

int getErrorCode () [inherited]

Returns the error code of this exception.

Returns

Exception’s error code.

3.10 SeApiMachineInUseException Class Reference

Inheritance diagram for SeApiMachineInUseException:

Collaboration diagram for SeApiMachineInUseException:

Public Member Functions

• SeApiMachineInUseException ()

• SeApiMachineInUseException (String message)

• int getErrorCode ()

3.10.1 Constructor & Destructor Documentation

SeApiMachineInUseException ()

SeApiMachineInUseException (String message)

3.10.2 Member Function Documentation

int getErrorCode () [inherited]

Returns the error code of this exception.

Returns

Exception’s error code.

3.11 SeApiMachineNotAvailableException Class Reference

Inheritance diagram for SeApiMachineNotAvailableException:

Collaboration diagram for SeApiMachineNotAvailableException:

RIVYERA/API 23

Public Member Functions

• SeApiMachineNotAvailableException ()

• SeApiMachineNotAvailableException (String message)

• int getErrorCode ()

3.11.1 Constructor & Destructor Documentation

SeApiMachineNotAvailableException ()

SeApiMachineNotAvailableException (String message)

3.11.2 Member Function Documentation

int getErrorCode () [inherited]

Returns the error code of this exception.

Returns

Exception’s error code.

3.12 SeApiReadTimeoutException Class Reference

Inheritance diagram for SeApiReadTimeoutException:

Collaboration diagram for SeApiReadTimeoutException:

Public Member Functions

• SeApiReadTimeoutException ()

• SeApiReadTimeoutException (String message)

• int getErrorCode ()

3.12.1 Constructor & Destructor Documentation

SeApiReadTimeoutException ()

SeApiReadTimeoutException (String message)

3.12.2 Member Function Documentation

int getErrorCode () [inherited]

Returns the error code of this exception.

Returns

Exception’s error code.

RIVYERA/API 24

3.13 SeApiWriteTimeoutException Class Reference

Inheritance diagram for SeApiWriteTimeoutException:

Collaboration diagram for SeApiWriteTimeoutException:

Public Member Functions

• SeApiWriteTimeoutException ()

• SeApiWriteTimeoutException (String message)

• int getErrorCode ()

3.13.1 Constructor & Destructor Documentation

SeApiWriteTimeoutException ()

SeApiWriteTimeoutException (String message)

3.13.2 Member Function Documentation

int getErrorCode () [inherited]

Returns the error code of this exception.

Returns

Exception’s error code.

3.14 SeControllerInfo Class Reference

Public Member Functions

• String getDriverName ()

• int getMachineSlot ()

• int getSerial ()

• String toString ()

3.14.1 Detailed Description

A class containing useful information about a controller.

Author

Jost Bissel

Daniel Siebert

3.14.2 Member Function Documentation

RIVYERA/API 25

String getDriverName ()

Returns

The driver used to access this controller.

int getMachineSlot ()

Returns

The machineSlot

int getSerial ()

Returns

The serial

String toString ()

3.15 SeFPGAInfo Class Reference

Public Member Functions

• SeFPGAType getType ()

• boolean isProgrammed ()

• int getFirmwareVersion ()

• int getFirmwareBuild ()

• String toString ()

3.15.1 Detailed Description

A class containing useful information about an FPGA.

Author

Jost Bissel

Daniel Siebert

3.15.2 Member Function Documentation

SeFPGAType getType ()

Returns

The type

boolean isProgrammed ()

Indicates whether this FPGA is programmed or not.

RIVYERA/API 26

Returns

Whether this FPGA is programmed or not

int getFirmwareVersion ()

Returns

The FPGA’s firmware version.

int getFirmwareBuild ()

Returns

The FPGA’s firmware build.

String toString ()

3.16 SeFPGAType Enum Reference

Public Member Functions

• String toString ()

Public Attributes

• fpga_none

• fpga_xc3s1000_4ft256

• fpga_xc3s1500_4fg676

• fpga_xc3s5000_4fg676

• fpga_xc6slx75_3fgg484

• fpga_xc6slx150_3fgg676

• fpga_xc4vsx35_10ff668

• fpga_10ax115h4f34e3sg

3.16.1 Detailed Description

Enum containing all chips supported by SciEngines API.

3.16.2 Member Function Documentation

String toString ()

3.16.3 Member Data Documentation

RIVYERA/API 27

fpga_none

fpga_xc3s1000_4ft256

fpga_xc3s1500_4fg676

fpga_xc3s5000_4fg676

fpga_xc6slx75_3fgg484

fpga_xc6slx150_3fgg676

fpga_xc4vsx35_10ff668

fpga_10ax115h4f34e3sg

3.17 SeOptions Class Reference

Classes

• enum SeRoutingMethod

• enum SeWriteBehavior

Public Member Functions

• SeOptions (SeWriteBehavior writeBehavior, SeRoutingMethod routingMethod)

• SeWriteBehavior getWriteBehavior ()

• void setWriteBehavior (SeWriteBehavior writeBehavior)

• SeRoutingMethod getRoutingMethod ()

• void setRoutingMethod (SeRoutingMethod routingMethod)

3.17.1 Constructor & Destructor Documentation

SeOptions (SeWriteBehavior writeBehavior, SeRoutingMethod routingMethod)

3.17.2 Member Function Documentation

RIVYERA/API 28

SeWriteBehavior getWriteBehavior ()

void setWriteBehavior (SeWriteBehavior writeBehavior)

SeRoutingMethod getRoutingMethod ()

void setRoutingMethod (SeRoutingMethod routingMethod)

3.18 SeProgInfo Class Reference

Public Member Functions

• boolean isProgrammed ()

• boolean isLicPresent ()

• int getLicLifetime ()

• String toString ()

3.18.1 Detailed Description

A class containing the program information for a specific slot, saved during the last call to

either se_program() or se_deprogram().

Author

Daniel Siebert

3.18.2 Member Function Documentation

boolean isProgrammed ()

Returns

true if the last call to SciEngines_API#se_program(int, SeAddress, String, long) was

successful or SciEngines_API#se_deprogram(int, SeAddress) has been called unsuc-

cessfully, otherwise false.

boolean isLicPresent ()

Returns

true if a license is present (no matter whether it has lapsed or not), otherwise false.

int getLicLifetime ()

Returns

The license’s remaining lifetime in minutes. This value is negative in case the license

has lapsed. If the license’s lifetime is infinite then the value is set to Integer#MAX_VAL-

UE . If no license is present then the value is set to 0

RIVYERA/API 29

String toString ()

3.19 SeOptions.SeRoutingMethod Enum Reference

Public Attributes

• se_routing_normal

3.19.1 Member Data Documentation

se_routing_normal

3.20 SeSlotInfo Class Reference

Public Member Functions

• boolean isController ()

• int getControllerIndex ()

• int getFpgaCount ()

• int getSerial ()

• int getPrevContr ()

• int getNextContr ()

• int getFirmwareVersion ()

• int getFirmwareBuild ()

• String toString ()

3.20.1 Detailed Description

A class containing useful information about a slot.

Author

Jost Bissel

3.20.2 Member Function Documentation

boolean isController ()

Returns

True, if controller else false.

int getControllerIndex ()

Returns

The index of the controller, if isController() returns true

RIVYERA/API 30

int getFpgaCount ()

Returns

The fpgaCount

int getSerial ()

Returns

The serial

int getPrevContr ()

Returns

This card’s previous controller index.

int getNextContr ()

Returns

This card’s next controller index.

int getFirmwareVersion ()

Returns

The FPGA’s firmware version.

int getFirmwareBuild ()

Returns

The FPGA’s firmware build.

String toString ()

3.21 SeOptions.SeWriteBehavior Enum Reference

Public Attributes

• se_write_async

• se_write_sync

3.21.1 Member Data Documentation

RIVYERA/API 31

se_write_async

se_write_sync

Imprint:

SciEngines GmbH

Am Kiel-Kanal 2

D-24106 Kiel Germany

Phone: +49(0)431-9086-2000

Fax: +49(0)431-9086-2009

E-Mail: info@SciEngines.com

Internet: www.SciEngines.com

CEO: Gerd Pfeiffer

Commercial Register: Amtsgericht Kiel

Commercial Register No.: HR B 9565 KI

VAT-Identification Number: DE 814955925

	Figures and Tables
	General
	Basic Information
	General ideas of parallel programming
	Concept of using SciEngines RIVYERA
	API version information
	RIVYERA API Addressing Scheme

	RIVYERA API Structure
	RIVYERA API Register Paradigm
	RIVYERA API Routing Strategies

	Java API Introduction
	Machine addressing
	Autonomous FPGA writes

	Namespace Documentation
	Package com
	Packages

	Package com.sciengines
	Packages

	Package com.sciengines.rivyera
	Packages

	Package com.sciengines.rivyera.api
	Packages
	Classes

	Package com.sciengines.rivyera.api.types
	Packages
	Classes

	Package com.sciengines.rivyera.api.types.exceptions
	Classes

	Class Documentation
	SciEngines_API Class Reference
	Static Public Member Functions
	Detailed Description
	Member Function Documentation

	SciEngines_API_Const Class Reference
	Static Public Attributes
	Member Data Documentation

	SeAddress Class Reference
	Public Member Functions
	Public Attributes
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

	SeApiException Class Reference
	Public Member Functions
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation

	SeApiFailedException Class Reference
	Public Member Functions
	Constructor & Destructor Documentation
	Member Function Documentation

	SeApiFileErrorException Class Reference
	Public Member Functions
	Constructor & Destructor Documentation
	Member Function Documentation

	SeApiInvalidAddressException Class Reference
	Public Member Functions
	Constructor & Destructor Documentation
	Member Function Documentation

	SeApiInvalidMachineException Class Reference
	Public Member Functions
	Constructor & Destructor Documentation
	Member Function Documentation

	SeApiLicenseErrorException Class Reference
	Public Member Functions
	Constructor & Destructor Documentation
	Member Function Documentation

	SeApiMachineInUseException Class Reference
	Public Member Functions
	Constructor & Destructor Documentation
	Member Function Documentation

	SeApiMachineNotAvailableException Class Reference
	Public Member Functions
	Constructor & Destructor Documentation
	Member Function Documentation

	SeApiReadTimeoutException Class Reference
	Public Member Functions
	Constructor & Destructor Documentation
	Member Function Documentation

	SeApiWriteTimeoutException Class Reference
	Public Member Functions
	Constructor & Destructor Documentation
	Member Function Documentation

	SeControllerInfo Class Reference
	Public Member Functions
	Detailed Description
	Member Function Documentation

	SeFPGAInfo Class Reference
	Public Member Functions
	Detailed Description
	Member Function Documentation

	SeFPGAType Enum Reference
	Public Member Functions
	Public Attributes
	Detailed Description
	Member Function Documentation
	Member Data Documentation

	SeOptions Class Reference
	Classes
	Public Member Functions
	Constructor & Destructor Documentation
	Member Function Documentation

	SeProgInfo Class Reference
	Public Member Functions
	Detailed Description
	Member Function Documentation

	SeOptions.SeRoutingMethod Enum Reference
	Public Attributes
	Member Data Documentation

	SeSlotInfo Class Reference
	Public Member Functions
	Detailed Description
	Member Function Documentation

	SeOptions.SeWriteBehavior Enum Reference
	Public Attributes
	Member Data Documentation

