
R
IV

Y
E

R
A

/A
P

I
S

c
iE

n
g

in
e
s

S
o
ft
w

a
re

D
iv

is
io

n

Released version

SCIENGINES
massively parallel computing

RIVYERA API

SciEngines RIVYERA Machine-API
Documentation
Development User Guide, Machine-API (VHDL)

Version 1.95.00

SciEngines GmbH

Revision: 1326 1.95.00 March 9, 2022

RIVYERA API RIVYERA/API
Revision: 1326 1.95.00 March 9, 2022

SciEngines RIVYERA Machine-API
Documentation
Development User Guide, Machine-API (VHDL)

Version 1.95.00

SciEngines GmbH

SciEngines GmbH

Am-Kiel-Kanal 2

24106 Kiel

Germany

Public

Released version

Prepared for SciEngines GmbH, Am-Kiel-Kanal 2, 24106 Kiel, Germany

Under No Contract Number

RIVYERA/API ii

Abstract: This introduction offers a brief overview of the SciEngines RIVYERA computer. It

describes the physical and structural details from the programmers’ point of view.

The main purpose of the RIVYERA API is to interface with single and multiple FPGAs in a

massively parallel architecture as simply and easily as possible. We intended to provide an

infrastructure for your FPGA designs which allows to leverage the benefits of a massively

parallel architecture without raising the complexity of your design.

Therefore, we provide a simple interface hiding the idiosyncratic implementation details of

the physical layers while permitting a high-level view of your RIVYERA computer.

Disclaimer: Any information contained in this document is confidential, and only intended for reception and use

by the company or authority who bought a SciEngines product. Drawings, pictures, illustrations and estimations

are nonbinding and for illustration purposes only. If you are not the intended recipient, please return the document

to the sender and delete any copies afterwards. In this case any copying, forwarding, printing, disclosure and use

is strictly prohibited. The information in this document is provided for use with SciEngines GmbH (’SciEngines’)

products. No license, express or implied, to any intellectual property associated with this document or such products

is granted by this document. All products described in this document whose name is prefaced by ’COPACOBANA’,

’RIVYERA’, ’SciEngines’ or ’SciEngines enhanced’ (’SciEngines products’) are owned by SciEngines GmbH (or

those companies that have licensed technology to SciEngines) and are protected by trade secrets, copyrights or

other industrial property rights. Products described in this document may still be subject to enhancements and

further developments. Therefore SciEngines reserves the right to change this document at any time without prior

notice. Although all data reported have been carefully checked before publishing, SciEngines GmbH is not liable

for any error or missing information. Your purchase, license and/or use of SciEngines products shall be subject to

SciEngines’ then current sales terms and conditions.

Trademarks:

The following are trademarks of SciEngines GmbH in the EU, the USA and other countries:

• SciEngines,

• SciEngines - Massively Parallel Computing,

• COPACOBANA,

• RIVYERA

Trademarks of other companies:

• Xilinx, Kintex and Vivado are registered trademarks of Xilinx Inc. in the USA and other countries.

• All other trademarks mentioned in this document are the property of their respective owners.

RIVYERA/API iii

Contents

Figures and Tables... iv

1 General .. 1

1.1 Basic Information ... 1

1.1.1 General ideas of parallel programming 1

1.1.2 Concept of using SciEngines RIVYERA 1

1.1.3 API version information.. 3

1.1.4 RIVYERA API Addressing Scheme .. 5

1.2 RIVYERA API Structure... 7

1.2.1 RIVYERA API Register Paradigm ... 7

1.2.2 RIVYERA API Routing Strategies ... 7

1.3 VHDL API Introduction ... 9

1.3.1 Introduction... 9

1.3.2 API instantiation and HDL design flow 9

1.3.3 Functional Description .. 10

1.3.4 General Notes .. 14

1.3.5 Example Code .. 17

1.4 Namespace Documentation.. 18

1.4.1 sciengines_api_types Namespace Reference............................ 18

1.5 Class Documentation .. 18

1.5.1 sciengines_api_types Package Reference 18

RIVYERA/API iv

Figures and Tables

Figures

Figure 1. Partitioning of a problem into host- and machine-parts 2

Figure 2. Design flow for multi-component software systems..................................... 3

Figure 3. VHDL-API taking care of user design’s I/O .. 7

Figure 4. Routing of a host-initiated write .. 8

Figure 5. Routing of an FPGA-initiated write .. 8

Figure 6. General HDL Design Flow ... 10

Figure 7. Input Register Timings .. 13

Figure 8. Output Register Timings.. 14

Tables

Table 1. Overview of version related Bitfile User IDs ... 11

Table 2. General ports of the API-Component ... 12

Table 3. Input Register ports of the API-Component ... 13

Table 4. Output Register ports of the API-Component... 14

RIVYERA/API 1

1 General

1.1 Basic Information

This introduction offers a brief overview of the SciEngines RIVYERA computer. It describes

the physical and structural details from the programmers’ point of view.

The main purpose of the RIVYERA API is to interface with single and multiple FPGAs in a

massively parallel architecture as simply and easily as possible. We intend to provide an

infrastructure for your FPGA designs which allows you to leverage the benefits of a massively

parallel architecture without raising the complexity of your design.

Therefore, we provide a simple interface hiding the idiosyncratic implementation details of

the physical layers while permitting a high-level view of your RIVYERA computer.

1.1.1 General ideas of parallel programming

Traditionally, software has been written for serial computation. There are two historic reasons

for serial computation concepts: one is that thinking in a serial, causal way is easy for most

humans, the other is that computers started mechanically. Still during the early 1980s, the

most common way to input data or programs was via punched tape or magnetic tape drives.

Most of today’s computers are von Neumann architectures. Named after the Hungarian

mathematician John von Neumann who first stated the general requirements for an electronic

computer in his 1945 papers. Since then, virtually all computers have followed this basic

design, which differed from earlier computers programmed through ’hard wiring’. Standard

CPUs are designed to provide a good instruction mixture for almost all commonly used

algorithms. Therefore, for a class of target algorithms they cannot be as effective as possible

in terms of design freedom. Most software is intended to be run on such general purpose

computers having one single central processing unit (CPU). A problem is split into a discrete

series of instructions, each instruction is executed one after the other and only a single

instruction may be executed at a time.

The SciEngines approach follows a massively parallelized architectural concept. It provides

a large number of Field Programmable Gate Arrays (FPGAs), which are able to implement

a huge number of individual processing elements. In the simplest case, FPGA parallel

computing is the simultaneous use of multiple resources like processing elements to solve

large computational problems. The RIVYERA API allows to interface hundreds of such

processing elements per FPGA. To solve a complex task, it is split into discrete parts that

can be solved concurrently. Each part is computed in its own processing element. Unlike

a classical CPU, the discrete parts are further split to a series of instructions which are

executed in highly problem-optimized dedicated hardware. This hardware task is coded in

the hardware description language VHDL. The instructions from each part are executed

simultaneously on different processing elements and FPGAs.

General computational problems usually demonstrate characteristics such as the ability to

be split into discrete pieces of work that can be solved simultaneously and execute multiple

program instructions at any moment in time. Therefore, problems are solved in less time with

SciEngines RIVYERA than with a single computational resource like a CPU.

1.1.2 Concept of using SciEngines RIVYERA

To efficiently use SciEngines RIVYERA, the computational problem or algorithm is split in two

general parts (see figure 1). One part is the strict software or frontend part which remains on

the integrated host PC inside the RIVYERA computer. The other part is the core algorithm

RIVYERA/API 2

which is accelerated by using the FPGAs on a single RIVYERA computer or even on multiple

RIVYERA computers. The FPGAs programmable by the user are referred to as UserFPGAs.

FPGA

FPGA

FPGA

computational
problem

010101010
101010101
010101000

.

.

.

111101010
101011101
010101111

.

.

.

FPGA configurationSoftware executable

Host PC

FPGA

Figure 1. Partitioning of a problem into host- and machine-parts

In general, the software part could be seen as a frontend for the user or as a data interface to

provide the resources for the FPGA accelerated parts. Also, simple pre- or post-computations

are ideal for this part. The RIVYERA Host-API offers a rich set of interface functions which

can be easily used by existing code.

CAUTION

In a massively parallel architecture the flow control should always be

a point to think about. To achieve the best speedup, the flow control

should be done within the Machine-API, e.g. by designing a special

FPGA entity. Compared to FPGA architectures, PC architectures react

much slower, because incoming events always have to be analyzed by

schedulers, memory managers and other OS components. Therefore, the

programmer always adds an artificial delay when allowing the FPGAs to

wait for a PC reaction. Flow control in your PC software using the Host-API

is still fast and quick to implement but might not result in the speedup your

design is capable of.

The second part implements the acceleration, flow control and multiple processing elements

to solve the computational problem. The RIVYERA Machine-API offers useful functions

which easily allows you to implement the key parts of the algorithm.

To create the host part and the machine part of your application, different software tools

are useful. On the host side, high level languages such as C or C++ and even Java are

addressed by the RIVYERA Host-API. In order to design efficient processing elements, VHDL

or Verilog is recommended. Implementations using cross-language compilers like SystemC

are possible, but will most likely not result in the expected speedups.

In order to move any suitable computational problem to the RIVYERA computer, the com-

putational problem should be partitioned into the two mentioned parts (see figure 2). For

the integrated frontend on the host PC, the usage of any suitable compiler and development

environment will create adequate results. The recommended tools are Eclipse for the IDE

and the Gnu C Compiler (gcc) or any comparable Unix based compiler in order to create

executable code on the integrated RIVYERA Host PC 1. Machines shipped with Unix based

operating systems, like Linux, usually provide a pre-installed gcc or equivalent compiler. All

available RIVYERA computers provide templates for several programming languages like

C/C++ or Java.

1RIVYERA API has been tested with Linux/gcc. Other compilers may work but are not officially supported.

RIVYERA/API 3

FPGA

computational
problem

010101010
101010101
010101000

.

.

.

111101010
101011101
010101111

.

.

.

Host PC

FPGA

C Code

VHDL

Library

IEEE

Library

VHDL

Code

SciEngines API
SciEngines
Host-API

SciEngines
Machine-API

Host C
compiler
e.g. gcc

VHDL
Compiler

VHDL
Syntheses

ISE

SciEngines

Host-API

SciEngines

Machine-API

SciEngines

Machine-API

problem partitioning

Figure 2. Design flow for multi-component software systems

For FPGA design and implementation, the recommended development environments for the

differing RIVYERA architectures are:

• RIVYERA S6-LX150: XILINX® ISE® development environment.

• RIVYERA X-32G1: INTEL® QUARTUS® development environment.

Most third party compilers and IDEs might work as there are no other templates included

except the ones provided for ISE® and QUARTUS®. Using the RIVYERA Machine-API allows

simple interfacing of your VHDL-implemented processing elements.

1.1.3 API version information

The SciEngines API follows a simple versioning scheme. All API versions are denoted

aa.bb.cc s with the symbols as follows.

• aa: Major API version

Major API version changes indicate that the complete code structure will have to be

changed if migrating. A changing Major version often indicate complete restructurings of

the APIs code and therefore have a very long interval.

• bb: Minor API version

A change in the API minor version will be triggered by new features.

• cc: API Service Pack (sometimes abbreviated with SP)

The API Service Pack will increase if there have been bug fixes.

RIVYERA/API 4

• s: API revision string

The revision string can be an arbitrary string annotating the version. For example, "RC1"

as a revision string may indicate that this is the first release candidate of a new API

version.

Within this scheme, there is one specific caveat: All versions with bb ≥ 90 are pre-release

versions of a higher major version. For example, API 1.90.00 was the first alpha version of

API 2.00.00.

RIVYERA/API 5

1.1.4 RIVYERA API Addressing Scheme

The addressing scheme in the RIVYERA API is straightforward. Every single data word

travels through the machine containing two addresses. One of these (the so called target)

contains information where it should be sent to, the other one (so called source) tells the

receiver where this word originated. Each address is built from multiple components which

will be explained below.

Physical Address Components

To gain highest possible flexibility, every FPGA in the whole RIVYERA is uniquely identifiable

and can therefore be addressed individually. The addressing scheme contains two physical

fields: Slot and FPGA address. These fields are derived from the physical machine structure.

Every RIVYERA computer physically consists of one or more FPGA Cards, each of which

is plugged into a backplane slot. All plugged cards are numbered from index 0 to index

CARD_COUNT-1, retaining their physical order. The index of each card is called its slot index.

Multiple FPGAs may reside on each card. Similar to the cards in one system, the FPGAs

are numbered in order, starting at index 0 as well. However, all FPGAs on one card share

the same slot index. Using both the slot and FPGA index, every FPGA may be addressed

uniquely throughout a whole RIVYERA computer.

Address Wildcards

Physical Address Components may be replaced by wildcards, such as ADDR_SLOT_ALL

or ADDR_FPGA_ALL. Using these wildcards, it is possible to create broadcast- or very

simple multicast-addresses. For example slot=ADDR_SLOT_ALL, fpga=0 refers to the

first FPGA on all cards, whereas slot=0, fpga=ADDR_FPGA_ALL selects all FPGAs on

slot 0. slot=ADDR_SLOT_ALL, fpga=ADDR_FPGA_ALL of course selects every FPGA

on every slot.

Virtual Address Components

The addressing scheme is completed by two more fields: command and register. Both fields

do not have any physical means but are only useful for communication. The command field

may contain one of read or write. Write commands do not imply a dedicated behavior on

the FPGA side, whereas read commands assume a proper answer. Please see section

2.5.1 (Responding to Read Requests) in the VHDL-documentation for more information. The

register address field MAY be used to create multiple data streams. It can be considered as

a stream identifier. As both sent and received words always contain information about their

source and target register the user can leverage a very powerful feature to create and design

his very own data-flows. A very common way to use the register field is to employ different

types of streams for each register. For example, consider an FPGA design which has two

calculation cores which have to be fed with independent data. In this example, it would make

sense to use register 0 for core 1 and register 1 for core 2. Please note that using multiple

registers does not affect communication bandwidth.

Target Addresses

A target address specifies where a given data word is to be delivered to and how the target

shall interpret the incoming word. For example, incoming words with api_i_tgt_cmd_out

= CMD_WR tells the target FPGA that the sender does not expect an answer. Whenever

RIVYERA/API 6

api_i_tgt_cmd_out = CMD_RD your user logic is expected to send a number of words

specified in api_i_data_out back to the sender.

Please note that as a receiver, you will not see the target slot and FPGA fields of an incoming

word, because these are given implicitly by data receipt.

Source Addresses

Source addresses contain information about the source of an incoming data word. While

a source’s slot and FPGA information is straightforward, the command and register fields

are more complex to understand. In general, both source command and source register

do not have to be taken into account. Whenever the user FPGA receives data from the

host interface, the source command will be CMD_WR and the source register will be set to

0x0. However, you are free to implement designs that effectively use these fields within

inter-FPGA communication, for example to tell the receiver to send responds to a defined

target address.

RIVYERA/API 7

1.2 RIVYERA API Structure

In the RIVYERA architecture all data uses the same transport channel and in order to

maintain the correctness of order, data frames are not allowed to overtake each other. These

specific features have to be kept in mind when designing your code for RIVYERA.

1.2.1 RIVYERA API Register Paradigm

User Code

User Control UnitMachine-API

Input Register

Output Register

General Ports

R
I
V
Y
E
R
A

B
U
S

Figure 3. VHDL-API taking care of user design’s I/O

Figure 3 shows the block diagram of one example of an FPGA design. The host interface

provided by the Machine-API is instantiated once and connects to an addressed FPGA.

This design paradigm will be modeled by the Machine-API and, accordingly, by the Host-API.

• Input Register

The SciEngines RIVYERA API enables the user to send and receive streamed data to

and from an FPGA. Using this mechanism, it is possible to send data from host to one

or multiple FPGAs as well as transfer data between FPGAs and send data from FPGAs

to the host. A stream consists of individual 64 bit data words which are transferred in

order. This means: words written earlier to an FPGA arrive earlier than words which are

written later.

• Output Register

The SciEngines RIVYERA API provides a single register which can be used to send

data. Whenever the user wants to send data to either the host PC or any other (possibly

multiple) FPGA(s), he may provide data to this output register.

Both Input and Output Register are realized as BlockRAM FIFOs.

1.2.2 RIVYERA API Routing Strategies

SciEngines API will support multiple routing schemes, so the RIVYERA can be adapted

according to each user’s needs. Currently, the only supported routing scheme is Smart

Routing. All routing strategies are strictly deterministic. Therefore, every sent word takes

exactly the same path through the RIVYERA, depending on its physical source and target

address. SciEngines API does not avoid links with high traffic.

Smart Routing

The Smart Routing strategy, which is enabled by default, will determine the shortest route

through the RIVYERA for every sent word. It will make full usage of the machine’s architecture

with its card-to-card shortcuts.

RIVYERA/API 8

Broadcasted transfers will automatically be spread in both communication directions to

reduce the worst-case latency. The following illustrations show one FPGA card with 8 FPGAs.

The sender of a word is always colored in bright green, whereas the links that are used to

pass a word are highlighted red. Please note that exactly the same routing method applies

to FPGA cards with different numbers of FPGAs.

Figure 4 depicts the route of a word written to all FPGAs by the Host application. The

host-connected Service FPGA duplicates the word and sends it to its User FPGAs using

both ring directions. All FPGAs but numbers 3 and 4 do both: forwarding the incoming word

to their successors and forwarding it to the internal user User Logic. The FPGAs 3 and 4

forward the word to their own user logic, but do not forward it to the next FPGA. Therefore,

no FPGA gets the word twice.

Backplane Interconnect

Host Interface

FPGA
5

FPGA
4

FPGA
3

FPGA
2

FPGA
6

FPGA
7

FPGA
0

FPGA
1

Svc
FPGA

Figure 4. Routing of a host-initiated write

The same principle of routing applies for FPGA ↔ FPGA transfers as shown in Figure 5. If

an FPGA issues a broadcast, then it is broadcasted in both directions and it is assured by

the API that no FPGA gets the same word twice.

Backplane Interconnect

Host Interface

FPGA
5

FPGA
4

FPGA
3

FPGA
2

FPGA
6

FPGA
7

FPGA
0

FPGA
1

Svc
FPGA

Figure 5. Routing of an FPGA-initiated write

RIVYERA/API 9

1.3 VHDL API Introduction

The following sections will give a more detailed overview regarding the HDL-API-Component.

1.3.1 Introduction

The SciEngines RIVYERA API provides easy access to the communication features that the

RIVYERA is capable of. The handling of the I/O registers is similar to the handling of Xilinx®

FIFO components. However, there are some slight differences in usage and behaviour of

SciEngines API components.

Features

The SciEngines RIVYERA API is a precompiled netlist (softmacro) and provides the following

features:

• Complete handling of all physical I/O-Layers and routing procedures

• Bidirectional (Full-Duplex) communication throughout the whole RIVYERA machine

• Fully asynchronous input and output register

• Support of reading and writing from and to every FPGA on the entire machine

• Up to 400 MB/s useable communication bandwidth per interconnect2

The VHDL-part of the SciEngines RIVYERA API comes within a single, precompiled entity

which has to be instantiated by designs running on RIVYERA machines.

1.3.2 API instantiation and HDL design flow

All the functionality of the SciEngines RIVYERA API is shipped within one single block. You

can consider it as a black box, that handles all the FPGAs I/O Pins and provides the interface

described in this document to your user code’s side. This black box is called a "Macro".

Thinking in terms of VHDL it is simply an entity that is capable of all the things necessary to

operate the RIVYERA. Figure 6 shows the general HDL-Design-Flow.

On its way to a programmable bitfile, every sourcecode has to pass the following steps:

• Synthesis

Within synthesis, the sourcecode is synthesized and transformed into an RTL Netlist.

The resulting netlist is often referred to as a Softmacro.

• Translation

The general netlist is translated into a Vendor specific netlist.

• Map

In Map phase, the netlist is mapped to the available logic on the target chip.

• Place & Route

In Place & Route (PAR), the gates are placed and routes are determined. Placed &

Routed Macros (Hardmacros) are of course excluded from PAR and are only taken in as

given blocks.

Because the HDL-API-Module comes as a softmacro, it is first opened in the translation step.

The SciEngines API module ships in a .edf format and will be translated to .ngo format in

the translation step. Please note that if your API Module changes on the file system, Xilinx

tools DO NOT update the translated netlist (.ngo) by themselves. The only way to force

Xilinx tools to update the translated netlist is to remove the SciEngines_API.ngo file in

2Depending on available device

RIVYERA/API 10

Synthesis

Translation

UCF File

Map

Macro

Place & Route

Sourcecode
Sourcecode
Sourcecode
Sourcecode

Netlist

(Softmacro)

Bitfile

Input Process Output

Figure 6. General HDL Design Flow

the project directory manually.

After your design passes all the design steps, a programming file (referred to as bitfile) is

generated. SciEngines API supports either binary bitfiles (.bit) or ASCII bitfiles (.rbt). In

order to not accidentally configure the FPGAs with a wrong bitfile, SciEngines API checks

the User ID contained in the bitfile which is depending on the active API version. Table 1

shows an overview of valid User IDs (X denotes a Don’t Care). This UserID check has been

introduced in the first alpha of the SciEngines API 2 (Version 1.90.00), so if you are using

API 1 (below version 1.90.00) you can ignore the UserID setting. Projects generated with

the SciEngines ProjectCompass will automatically set the correct User ID. If you want to

create a project manually, you can set the User ID with the bitgen -g UserID: switch

or graphically in the Confguration Options of the Generate Programming File properties.

1.3.3 Functional Description

RIVYERA/API 11

API Version User ID

<1.90.00 0xXXXXXXXX

<2.90.00 0x10000000

Table 1. Overview of version related Bitfile User IDs

The SciEngines RIVYERA API module handles the RIVYERA Bus traffic and provides

communication features to the user’s FPGA design.

The SciEngines RIVYERA API provides a 64-bit input register. The register will buffer all

incoming data. This data will only be discarded if the user’s FPGA design acknowledges its

receipt. When the FPGA has data to send, the 64-bit output register may be used.

General Ports

As well as the ports used for communication, RIVYERA API contains additional ports for clock-

ing, reset and additional information. Table 2 shows all general ports of the API-Component

including a short description. All of these general RIVERA API ports are running at 100

MHz. Therefore, api_clk_out, provides a 100 MHz clock. RIVYERA API uses two of the

FPGA’s DCMs, so you are free to use all the others to create different clock domains. The

clock output of the SciEngines API may be directly connected to another DCM (please select

No Buffer as clock input Source when creating the DCM).

Note that after powerup, SciEngines RIVYERA API will need some time to initiate itself,

so api_rst_out will be high initially. Whenever api_rst_out is low, your design may

safely run. As long as api_rst_out is asserted, it is not safe to use any information

contained in the general ports, because they may change during initialization.

The ports api_self_slot and api_self_fpga contain information about the FPGA’s

address.

The ports api_*_contr_out contain information about all controllers next to the

FPGA’s slot. If the slot of the FPGA has an interface to the host-PC, api_self_contr_out

is asserted. api_next_contr_out provides the next controller’slot index, which is the

first card with a higher slot index and a host-interface. If there is no next controller, then

api_next_contr_out points to the previous controller if api_self_contr_out is

not asserted or to its own slot index, otherwise. According to the next controller informa-

tion, api_prev_contr_out provides the first card with a lower slot index and a host-

interface. If there is no such card, it points to the next controller if api_self_contr_out

is not asserted or to its own slot index, otherwise. If api_self_contr_out is asserted

(meaning that the FPGA’s card has a host-interface) and there is no other controller, both

api_prev_contr_out and api_next_contr_out point to its own slot index.

The port api_led_in can be used to drive the LEDs connected to the FPGA.

RIVYERA/API 12

Bit(s) Name Direction Reset Value Description

0 api_clk_out Output 0 Clock. The API’s clock output.

0 api_rst_out Output 1 Reset. Reset output needed to reset the user’s design.

1-0 api_led_in Input 00 LED. Input to enable/disable the User-FPGA’s LEDs.

Tied to 0 if not set.

0 api_self_contr_out Output 0 Controller Flag. Indicating wether there is a host inter-

face connected to this slot or not.

9-0 api_next_contr_out Output 0x0 Next Controller Adress. The slot address where the

next host interface is located at.

9-0 api_prev_contr_out Output 0x0 Previous Controller Adress. The slot address where

the previous host interface is located at.

9-0 api_self_slot_out Output 0x0 Slot Address. The FPGA’s slot address.

4-0 api_self_fpga_out Output 0x0 FPGA Address. The FPGA’s FPGA address.

Table 2. General ports of the API-Component

CAUTION

api_rst_out should not be used as a global reset for all instantiated

logic without design consideration. If you want to reset your logic according

to api_rst_out, you have two options to consider:

• Adding a timing ignore attribute (TIG) to api_rst_out. Consider-

ation should be given that the design might not start synchronously,

meaning that some components may sense user_rst_out low ear-

lier than other. This is simply because the design tools do not analyze

api_rst_out anymore regarding its timing aspects, so the signal

may have different runtime from its source to each component.

• Build a FlipFlop tree to distribute the signal to all your logic avoiding a

huge fan-out. Building a FlipFlop tree is the more difficult way to handle

a global reset, but the safer way, as well. With building a FlipFlop

chain, you add an artificial delay to the signal, allowing it to reach

every component at the same time. This, of course, makes your code

start later than api_rst_out might indicate, but api_rst_out=0

only means that your design may start to run, but not that it has to.

Input register

The input register is used for incoming data transfer. Its behaviour is similar to that of First-

Word-Fall-Through FIFOs. For all incoming data words, the user’s design has to acknowledge

its receipt, so the API can make sure that the user’s design does not miss any data.

All ports of the input register are synchronous to api_i_clk_in. This port MUST be

connected in order to be able to receive data. It can be conencted to any desired clock,

as long as timing closure can be reached. If unsure, simply connect api_i_clk_in to

api_clk_out. This will operate the input register at the same clock as the general ports.

The presence of data in the Input register will be signalled by unasserted api_i_empty_out.

As long as api_i_empty_out is not asserted, all output ports will provide valid data.

api_i_empty_out will stay asserted as long as the Input register does not contain more

than one word.

Once api_i_empty_out is low and the next incoming word is desired, api_i_rd_en

should be asserted for one clock cycle. This leads to discard of the currently present word

and presents the next word from the FIFO, if any. Please note that the input register has a

delay of two clock cycles. If api_i_rd_en_in is asserted, the register content WILL NOT

CHANGE in the very NEXT CLOCK CYCLE. Simple Implementations - as the given example

code below - will therefore only sample the register’s content if api_i_rd_en_in = ’0’

AND api_i_empty_in = ’0’ to make sure that the register is given time to update its

content. For a performance optimization, please consider the use of api_i_am_empty_in.

Figure 7 illustrates the receipt of a read request from the controller interface at slot zero,

followed by a write to register 2 by fpga 4 on slot 2.

The first word (api_i_data_out = D1) arrives at the Input register, indicated by api_i_empty_out

RIVYERA/API 13

Bit(s) Name Direction Reset Value Description

0 api_i_clk_in Input - Clock. All input register ports will by synchronous to

this clock. It MUST be connected.

9-0 api_i_src_slot_out Output 0x0 Source Slot Address. The slot address of the commu-

nication source

4-0 api_i_src_fpga_out Output 0x0 Source FPGA Address. The FPGA address of the

communication source

5-0 api_i_src_reg_out Output 0x0 Source Register Address. The register address of the

communication source

0 api_i_src_cmd_out Output 0 Source Command. The source’s command.

5-0 api_i_tgt_reg_out Output 0x0 Target Register Address. The register address this

word was targetted at communication source.

0 api_i_tgt_cmd_out Output 0 Target Command. The command to be performed.

63-0 api_i_data_out Output 0x0 Data. The data to be read.

0 api_i_empty_out Output 0 Empty. This flag is indicating that there is no input

available.

0 api_i_am_empty_out Output 0 Almost Empty. This flag is indicating that there is only

one more word of input available.

0 api_i_rd_en_in Input 0 Acknowledge. This control signal acknowledges that

the user core is aware of the new data and indicates

that the data register can be freed.

Table 3. Input Register ports of the API-Component

= ’0’. Because there is only one word inside the register, api_i_am_empty_out stay

asserted. This changes in the very next clock cycle, because the second word arrives at the

register. It now contains two words and therefore api_i_am_empty_out gets asserted.

Two clock cycles after api_i_rd_en_in is triggered, the first word is discarded and the sec-

ond word is provided at the interface. According to its definition, api_i_am_empty_out

transits to high again, because the presented word is the only word present in the Input reg-

ister at this time. After the second word gets read, too, api_i_empty_out gets asserted,

indicating the there is no valid data present.

Figure 7. Input Register Timings

Output Register

If the FPGA needs to send data to any other FPGA or to the host, the output register has

to be used. All ports of the output register are synchronous to api_o_clk_in. This port

MUST be connected in order to be able to send data. It can be connected to any desired

clock, as long as timing closure can be reached. If unsure, simply connect api_o_clk_in

to api_clk_out. This will operate the output register at the same clock as the general

ports.

RIVYERA/API 14

Bit(s) Name Direction Reset Value Description

0 api_o_clk_in Input - Clock. All output register ports will by synchronous to

this clock. It MUST be connected.

9-0 api_o_tgt_slot_in Input 0x0 Target Slot Address. The slot address of the commu-

nication target.

4-0 api_o_tgt_fpga_in Input 0x0 Target FPGA Address. The FPGA address of the

communication target.

5-0 api_o_tgt_reg_in Input 0x0 Target Register Address. The register address of the

communication target.

0 api_o_tgt_cmd_in Input 0 Source Command. The command to be performed at

the target.

5-0 api_o_src_reg_in Input 0x0 Source Register Address. The register address of the

communication source.

0 api_o_src_cmd_in Input 0 Target Command. The command that an appropriate

answer should be directed to.

63-0 api_o_data_in Input 0x0 Data. The data to be sent.

0 api_o_wr_en_in Input 0 Write. Initiates the send process.

0 api_o_rfd_out Output 0 Ready for data. Flag for indicating if the API core is

ready for data.

Table 4. Output Register ports of the API-Component

Whenever api_o_rfd_out is high, you may pass data to this register. Additionally, it is

able to write data in the very next clock cycle, when api_o_rfd_out changes from high to

low, because it is designed as an inverted almost full flag.

The usage of the output register is straightforward. After providing the data to api_o_data_in,

target command to api_o_tgt_cmd_in, target address to api_o_tgt_*_in, source

command and source register to api_o_src_*_in, everything is sent by setting api_o_wr_en_in

to ’1’ for one clock cycle. Be sure to set api_o_tgt_cmd_in to the desired command.

Figure 8 illustrates the process of sending data to slot 1, FPGA 3, register 2 from register 5

with respect to the api_o_rfd_in flag.

Once api_o_rfd_out gets asserted, it is allowed to strobe the api_o_wr_en_out

signal to send the data presented to the interface. In the example, the words D1, D2, D3 and

D4 are sent within the first assertion period of api_o_rfd_in.

Figure 8. Output Register Timings

1.3.4 General Notes

RIVYERA/API 15

The SciEngines API can handle much of the communication complexity, but not all of

it. Hence your code also has to provide an appropriate functionality. Consider an incoming

read request (CMD_RD): As soon as some component addresses your design, it is up to your

code to react and send back an appropriate response.

Responding to Read Requests

Read requests are a special case in SciEngines RIVYERA API as they need to be serviced

by your design. A read request is sent whenever a component waits for incoming data.

Every read request (CMD_RD) has to be answered by sending a write request (CMD_WR) with

the read request’s source as new target and the read request’s target as source. Therefore

you need to set api_o_src_reg_in to the input target register api_i_tgt_reg_out

and set api_o_tgt_reg_in to the input source register api_i_src_reg_out.

It is easy to imagine that you have to claim that you respond as register api_o_src_reg_in,

so when register 2 should be read and the response is expected to be written to register 5,

then (api_i_new_out = ’1’, api_i_tgt_reg_out = “000010”, api_i_src_reg_out

= “000101” and api_i_tgt_cmd_out = CMD_RD) are set and you claim to respond

as register 2 and therefore set api_o_src_reg_in <= “000010”, api_o_tgt_reg_in

<= “000101”.

Whenever a read request occurs, api_i_data_out will contain the number of 64 bit words

expected to be sent by your design, so when api_i_data_out equals 0x3, your design

is expected to send three words.

Initiating Read Requests

When your design initiates a read request, the request’s target will react by writing data to

the input source register that was specified in api_o_src_reg_in while sending the read

request.

The number of words expected by the target to be returned needs to be put to api_o_data_in

(e.g. when the target has to return three words, api_o_data_in is set to 0x3).

Note: You can not request to read data from the host.

Host Data Transfers

In order to address the host system, simply set api_o_tgt_fpga_in to ADDR_FPGA_HOST.

Additionally, you need to specify the correct target slot. Note that the card located in the

target slot MUST be connected to a Host Controller. You will find the addresses of the

surrounding controllers in api_prev_contr_out and api_next_contr_out. In gen-

eral the UserFPGAs are reacting to host read requests, which occur at the input register

with api_i_tgt_cmd_out = CMD_RD. If so, you can simply write back to the request’s

source slot. If this is not the case, and your design needs to write data to the host without

being asked for it, please refer section Autonomous Writes.

Autonomous Writes

There might be some cases in which the FPGAs need to communicate with the host soft-

ware without being requested to. For convenience, these FPGA write actions will be called

RIVYERA/API 16

autonomous writes. Whenever your design needs to write data to the host without being

asked for it, you need to specify FPGA ADDR_FPGA_HOST as target. Please note that in the

current API Version you will not be able to use a wildcard to address the very next controller

but you have to set the target controller’s slot address by yourself. This can be done either

by specifying a specific slot with an active PC connection or you may write data targeted for

slot ADDR_SLOT_ALL to send the data to the very next controller. In the case of transfers to

the controller, (ADDR_SLOT_ALL) does NOT denote a real broadcast but will be replaced

by the next controller’s slot. See the Host-API documentation for how to handle autonomous

FPGA writes.

RIVYERA/API 17

1.3.5 Example Code

Reading and writing to registers is straightforward since it does not differ from standard

components provided by Xilinx®. In order to help you become familiar with the machine and

to allow you to start programming designs right away, a brief introduction to the behaviour of

the RIVYERA API components will be given.

Reading an Input Register

The most common case in communication will be reading incoming data from an input

register. As we described briefly in section 1.3.3, you have to confirm the reading of every

data package, otherwise the input register will block any further traffic.

Listing 1.1. Example code of how to read an input register

−− Regis te r to s to re the source s l o t f o r l a t e r computat ion

s i g n a l s r c _ s l o t : seSlotAddr_type := (o thers => ’ 0 ’) ;

−− Reg is te r to s to re the source command

s i g n a l src_cmd : seCmd_type := CMD_WR;

−− Regis te r to s to re the t a r g e t command

s i g n a l tgt_cmd : seCmd_type := CMD_WR;

−− Regis te r to s to re the payload f o r l a t e r computat ion

s i g n a l data : seData_type := (o thers => ’ 0 ’) ;

inpu t_proc : process

begin

wa i t u n t i l a p i _ c l k _ i n = ’1 ’ and ap i_c l k_ in ’ event ;

−− Only proceed i f new data a v a i l a b l e

i f api_ i_empty_out = ’0 ’ and ap i_ i_ rd_en_ in = ’0 ’ then

−− Store data ’ s source and command word

s r c _ s l o t <= a p i _ i _ s r c _ s l o t _ o u t ;

src_cmd <= api_i_src_cmd_out ;

tgt_cmd <= api_ i_ tg t_cmd_out ;

−− Store data i f i t i s meant to be w r i t t e n .

i f ap i_ i_ tg t_cmd_out = CMD_WR then

−− Store data f o r c a l c u l a t i o n

data <= ap i_ i_da ta_out ;

end i f ;

−− Confirm the r e c e i p t o f data .

ap i_ i_ rd_en_ in <= ’ 1 ’ ;

e lse

−− I f no data present , do not read .

ap i_ i_ rd_en_ in <= ’ 0 ’ ;

end i f ;

end process ;

RIVYERA/API 18

Sending Data

In order to send data you have to be aware that data may only be sent if api_o_rfd_out

is asserted. Otherwise any change to the port’s signals will have no effect. After setting the

target’s address (including slot-, fpga- and register address), the desired command and the

payload, the whole frame is written by setting api_o_wr_en_in to ’1’. The API is ready

for the next data word as soon as api_o_rfd_out is high again.

Listing 1.2. Example code of how to send data

output_proc : process

begin

wa i t u n t i l a p i _ c l k _ i n = ’1 ’ and ap i_c l k_ in ’ event ;

−−−−−−−− Set i n fo rma t i ons −−−−−−−−−

−− Spec i fy command (here : w r i t e command)

api_o_tgt_cmd_in <= CMD_WR;

−− Set Address to S lo t 3 , FPGA 2 , i npu t r e g i s t e r 4

a p i _ o _ t g t _ s l o t _ i n <= " 0000000010 " ;

ap i_o_ tg t_ fpga_ in <= " 00001 " ;

ap i_o_ tg t_ reg_ in <= " 000011 " ;

−− Send from r e g i s t e r 1

ap i_o_src_reg_in <= " 000001 " ;

api_o_src_cmd_in <= CMD_WR;

−− Set payload

api_o_data_in <= (o thers => ’ 0 ’) ;

−−−−−−−−−− Try to w r i t e −−−−−−−−−−−

−− Only w r i t e i f API i s ready .

api_o_wr_en_in <= ap i_o_r fd_out ;

end process ;

1.4 Namespace Documentation

1.4.1 sciengines_api_types Namespace Reference

This package contains all the types and constants used for the SciEngines RIVYERA

API.

1.5 Class Documentation

1.5.1 sciengines_api_types Package Reference

This package contains all the types and constants used for the SciEngines RIVYERA

API.

Constants

• LENGTH_ADDR_SLOT positive:= 10

The length of a slot address.

• LENGTH_ADDR_FPGA positive:= 5

The length of an FPGA address.

• LENGTH_ADDR_REG positive:= 6

The length of a register address.

• LENGTH_ADDR positive:= 21

The overall address length.

• LENGTH_CMD positive:= 1

The length of command words.

RIVYERA/API 19

• LENGTH_DATA positive:= 64

The length of the payload.

• LENGTH_HW_REV positive:= 8

The length of the hardware revision vector.

Data types for single words

Types

• seBusFlag_typeisarray(naturalrange<>)ofseFlag_type

Data type used for multiple flags.

Subtypes

• seFlag_type std_logic

Data type used for single flags.

• seSlotAddr_type std_logic_vector(LENGTH_ADDR_SLOT - 1 downto 0)

Data type for slot addresses.

• seFpgaAddr_type std_logic_vector(LENGTH_ADDR_FPGA - 1 downto 0)

Data type for FPGA addresses.

• seRegAddr_type std_logic_vector(LENGTH_ADDR_REG - 1 downto 0)

Data type for register addresses.

• seCmd_type std_logic_vector(LENGTH_CMD - 1 downto 0)

Data type for command words.

• seData_type std_logic_vector(LENGTH_DATA - 1 downto 0)

Data type for payload.

• seHwRev_type std_logic_vector(LENGTH_HW_REV - 1 downto 0)

Data type for hardware revision information.

Addressing wildcards

Constants

• ADDR_SLOT_ALL seSlotAddr_type :=(others=>’ 1 ’)

Slot wildcard.

• ADDR_FPGA_ALL seFpgaAddr_type :=(others=>’ 1 ’)

FPGA wildcard.

• ADDR_FPGA_HOST seFpgaAddr_type :=(0 =>’ 0 ’,others=>’ 1 ’)

Host FPGA constant.

• ADDR_REG_EOT seRegAddr_type :=(others=>’ 1 ’)

EOT Register constant.

Command types

Constants

• CMD_RD seCmd_type :=" 0 "

Read command.

• CMD_WR seCmd_type :=" 1 "

Write command.

RIVYERA/API 20

RIVYERA X32 Clocking definitions

Constants

• PLL_DEFAULT_M pll_reconf_data_t :=(isOddDivision=>’ 0 ’,isBypass=>’ 0 ’,high-

Div=>x" 03 ",lowDiv=>x" 03 ")

Default value for PLL M value (Multiply 6)

• PLL_DEFAULT_N pll_reconf_data_t :=(isOddDivision=>’ 0 ’,isBypass=>’ 1 ’,high-

Div=>x" 00 ",lowDiv=>x" 00 ")

Default value for PLL N value (Divide 1 / Bypass)

• PLL_DEFAULT_C pll_reconf_data_t :=(isOddDivision=>’ 0 ’,isBypass=>’ 0 ’,high-

Div=>x" 03 ",lowDiv=>x" 03 ")

Default valud for all PLL C valued (Divide 6)

Types

• record: pll_reconf_data_tOddDivision:std_logic

isBypass:std_logic

highDiv:std_logic_vector(7 downto 0)

lowDiv:std_logic_vector(7 downto 0)

Data type for PLL reconfiguration data.

• pll_reconf_data_arr_tisarray(naturalrange<>)ofpll_reconf_data_t

Array of PLL reconiguration data.

• record: pll_reconf_data_userm:pll_reconf_data_t

n:pll_reconf_data_t

c:pll_reconf_data_arr_t (8 downto 0)

Record containing all User PLL reconfiguration values.

• record: pll_reconf_data_api_iom:pll_reconf_data_t

n:pll_reconf_data_t

c:pll_reconf_data_t

Record containing all IO PLL reconfiguration values.

FPGA types

Constants

• FPGA_none seFpgaType_type :=" 0000 "

No or unknown FPGA.

• FPGA_xc3s1000_4ft256 seFpgaType_type :=" 0001 "

Xilinx Spartan 3 1000, Speed Grade -4, Package FT256.

• FPGA_xc3s1500_4fg676 seFpgaType_type :=" 0010 "

Xilinx Spartan 3 1500, Speed Grade -4, Package FG676.

• FPGA_xc3s5000_4fg676 seFpgaType_type :=" 0011 "

Xilinx Spartan 3 5000, Speed Grade -4, Package FG676.

• FPGA_xc6slx75_3fg484 seFpgaType_type :=" 0100 "

Xilinx Spartan 6 LX75, Speed Grade -3, Package FG484.

• FPGA_xc6slx150_3fg676 seFpgaType_type :=" 0101 "

Xilinx Spartan 6 LX150, Speed Grade -3, Package FG676.

• FPGA_xc4vsx35_10ff668 seFpgaType_type :=" 0110 "

Xilinx Virtex 4 SX35, Speed Grade -10, Package FF668.

• FPGA_10ax115h4f34e3sg seFpgaType_type :=" 0111 "

Intel Arria10 GX 1150, Speed Grade -3, Package F34.

RIVYERA/API 21

• FPGA_10ax032h4f34e3sg seFpgaType_type :=" 1000 "

Intel Arria10 GX 320, Speed Grade -3, Package F34.

Subtypes

• seFpgaType_type std_logic_vector(3 downto 0)

Datatype used for FPGA types.

Imprint:

SciEngines GmbH

Am Kiel-Kanal 2

D-24106 Kiel Germany

Phone: +49(0)431-9086-2000

Fax: +49(0)431-9086-2009

E-Mail: info@SciEngines.com

Internet: www.SciEngines.com

CEO: Gerd Pfeiffer

Commercial Register: Amtsgericht Kiel

Commercial Register No.: HR B 9565 KI

VAT-Identification Number: DE 814955925

	Figures and Tables
	General
	Basic Information
	General ideas of parallel programming
	Concept of using SciEngines RIVYERA
	API version information
	RIVYERA API Addressing Scheme

	RIVYERA API Structure
	RIVYERA API Register Paradigm
	RIVYERA API Routing Strategies

	VHDL API Introduction
	Introduction
	API instantiation and HDL design flow
	Functional Description
	General Notes
	Example Code

	Namespace Documentation
	sciengines_api_types Namespace Reference

	Class Documentation
	sciengines_api_types Package Reference

