
2
0
2
3
Q

2
/c

9
4
a
4
5
c
0

S
c
iE

n
g

in
e
s

S
o
ft
w

a
re

D
iv

is
io

n

Released version

SCIENGINES
massively parallel computing

SciEngines se_mon
Application User Guide

Version 1.95.10

May 16, 2023

2023Q2/c94a45c0

May 16, 2023

SciEngines se_mon
Application User Guide

Version 1.95.10

SciEngines GmbH

Am Kiel-Kanal 2

24106 Kiel

Germany

Public

Released version

2023Q2/c94a45c0 ii

Disclaimer: Any information contained in this document is confidential, and only intended for reception and use

by the company or authority who bought a SciEngines product. Drawings, pictures, illustrations and estimations

are nonbinding and for illustration purposes only. If you are not the intended recipient, please return the document

to the sender and delete any copies afterwards. In this case any copying, forwarding, printing, disclosure and use

is strictly prohibited. The information in this document is provided for use with SciEngines GmbH (’SciEngines’)

products. No license, express or implied, to any intellectual property associated with this document or such products

is granted by this document. All products described in this document whose name is prefaced by ’COPACOBANA’,

’RIVYERA’, ’SciEngines’ or ’SciEngines enhanced’ (’SciEngines products’) are owned by SciEngines GmbH (or

those companies that have licensed technology to SciEngines) and are protected by trade secrets, copyrights or

other industrial property rights. Products described in this document may still be subject to enhancements and

further developments. Therefore SciEngines reserves the right to change this document at any time without prior

notice. Although all data reported have been carefully checked before publishing, SciEngines GmbH is not liable

for any error or missing information. Your purchase, license and/or use of SciEngines products shall be subject to

SciEngines’ then current sales terms and conditions.

Trademarks:

The following are trademarks of SciEngines GmbH in the EU, the USA and other countries:

• SciEngines,

• SciEngines - Massively Parallel Computing,

• COPACOBANA,

• RIVYERA

Trademarks of other companies:

• Xilinx, Kintex and Vivado are registered trademarks of Xilinx Inc. in the USA and other countries.

• All other trademarks mentioned in this document are the property of their respective owners.

2023Q2/c94a45c0 iii

Contents

1 General Information... 1

1.1 Overview .. 1

1.2 Scope .. 1

2 Starting se_mon... 2

2.1 Prerequisites .. 2

2.2 Executing se_mon ... 2

2.3 Command line arguments ... 2

3 Shell prompt... 4

3.1 Executing a command ... 4

3.2 Executing an API command.. 4

3.3 Command Completion... 4

3.3.1 Completing a command name.. 4

3.4 History ... 4

4 Templates ... 5

5 Supported commands .. 8

5.1 allocMachine .. 8

5.2 deprogram ... 8

5.3 flush ... 8

5.4 freeMachine ... 9

5.5 getControllerCount .. 9

5.6 getControllerInfo ... 9

5.7 getFPGACount .. 10

5.8 getFPGAInfo ... 10

5.9 getMachineCount ... 10

5.10 getSlotCount ... 10

5.11 getSlotInfo .. 11

5.12 getProgInfo ... 11

5.13 getTemperature ... 11

5.14 program ... 12

5.15 readActive .. 12

5.16 readPassive .. 13

5.17 readRequest ... 13

5.18 waitForData .. 14

5.19 write .. 14

5.20 alias .. 15

5.21 batch ... 16

5.22 batchLoop .. 16

5.23 breakPoint .. 18

5.24 fileRead ... 18

5.25 fileWrite ... 18

5.26 goto .. 19

5.27 help... 20

2023Q2/c94a45c0 iv

5.28 options... 20

5.29 template ... 21

5.30 quit ... 21

5.31 sleep ... 21

5.32 timeout .. 22

6 Third Party Licenses.. 23

2023Q2/c94a45c0 1

1 General Information

1.1 Overview

This guide introduces you to the basic features of the SciEngines monitoring tool se_mon

and the tasks you need to perform using the command line user interface.

The primary task of se_mon is to enable the user to perform all SciEngines API calls in an

interactive command shell. This allows a developer to test the FPGA design’s behavior and

communication between host and FPGAs.

1.2 Scope

The se_mon User Documentation steps you through the se_mon command line options, the

shell functionality itself and the available commands.

2023Q2/c94a45c0 2

2 Starting se_mon

2.1 Prerequisites

Before using se_mon the FPGA cluster should be ready for use. Please refer to the

SciEngines RIVYERA User Guide to perform all steps needed to prepare the machine for

operation.

2.2 Executing se_mon

Make sure you are logged in to your RIVYERA Computer. To execute se_mon just type

se_mon into your favorite shell and hit <RETURN>. If your shell is unable to resolve the

binary’s correct location, the binary may be executed directly via typing

/opt/sciengines/current/bin/se_mon.

When executing se_mon without any command line arguments, it is started in interactive

mode. In interactive mode, the user is able to enter a sequence of commands at the prompt.

Please refer to section 3 to learn more about the shell functionality. The se_mon command

line prompt in the interactive mode is shown below:

se_mon version 1.95.10

Copyright (c) 2011-2023, SciEngines GmbH

All rights reserved.

SciEngines RIVYERA Host-API version 1.95.06 , build 1373

-- Enter "help" to get some help. --

Machine=0 Contr=0 Slot=0 FPGA=0 >

2.3 Command line arguments

se_mon may be started with options that are set via command line arguments. For each

option there may be either a short name or a long name used.

The possible options are as follows:

2023Q2/c94a45c0 3

Option Argument Description

-b or --batch FILE Run the batch file FILE and exit.

-c or --command CMD Run the command CMD and exit. CMD may consist of

multiple commands, separated by semicolon.

-n or --no-color Disable colors otherwise used to highlight error

and warning messages.

-s or --force-stdout Force all warnings and errors to be printed to

stdout instead of stderr.

-i or --ignore-errors Ignore errors during batch file execution.

-w or --warnings-as-errors Treat warnings as errors.

-e or --ignore-eot Ignore EOT words when reading from FPGA.

-t or --template FILE Use the template file FILE for formatting the

output. The template file’s syntax is described

in detail in section 4.

--interactive Continue in interactive mode after processing a

batch file or a command.

-h or --help Display this help and exit.

--version Display the product version and exit.

2023Q2/c94a45c0 4

3 Shell prompt

3.1 Executing a command

There are several commands which may be executed. After starting se_mon in interactive

mode (not using switch -b or --batch), you may enter a command by typing its name

followed by optional command arguments. To execute that argument, press the <RETURN>

key. Some commands produce outputs on the console, others do not. If there is no

error printed the command was successfully executed. To alter a command, just use the

<CURSOR LEFT> and <CURSOR RIGHT> keys to navigate within the line and standard

edit keys to edit the line.

When executing, for example, the command help, type help followed by pressing the

<RETURN> key. This command will print out a list of all possible commands including a short

description.

3.2 Executing an API command

API commands are instructions, that use the SciEngines Host API. When running an API

command it is executed based on the currently selected machine, controller, slot and FPGA.

Depending on the the instruction, also the currently set timeout is used. To change the

currently selected machine, controller, slot and FPGA indices, use the command goto (see

section 5.26). The currently selected machine, controller, slot and FPGA indices are shown

in the command prompt. To get or set the timeout that is used to execute an API command,

use command timeout (see section 5.32).

This prompt, e.g., tells the user that the currently selected machine, controller, slot and FPGA

indices are set to 0, 0, 1 and 2, respectively: "

Machine=0 Contr=0 Slot=1 FPGA=2 >

3.3 Command Completion

3.3.1 Completing a command name

When started interactively, command name prefixes may be completed to a command name

using the <TABULATOR> key. For example, if one typed he and pressed the <tabulator> key,

the command prefix he is completed to help. In case of ambiguities, i.e. prefixes possibly

resolving to more than a single command, all possible completions are stepped through

one after the other upon pressing the <TABULATOR> key. The prefix fil, for example, will

be completed to fileRead at first. When pressing the <TABULATOR> key a second time

fileRead will be replaced by fileWrite.

3.4 History

Each command that is interactively executed within se_mon is recorded in a history. This

history allows the user to repeat a previous command or alter it before execution. To navigate

within this history you may use the <CURSOR UP> key to get to older history entries. Use

<CURSOR DOWN> to get to later entries. Also <PAGE UP> and <PAGE DOWN> may be

used to get to the first and latest history entry. When quitting se_mon, the current history is

saved into the file .se_mon_history located in the current user’s home directory.

2023Q2/c94a45c0 5

4 Templates

Usually, when executing the commands readActive, readPassive, fileRead and

waitForData -r, all values are printed in decimal, hexadecimal and binary representation.

This output format may be altered using a template file. The se_mon command line option

-t or --template may be used to specify a default template. Additionally, the default

template may be altered using the template command (see 5.29).

A template file is expected to be stored in ASCII format. Lines have to be separated by the

newline character (\n). Each line is interpreted as one single instruction. Arguments for these

instructions are separated by the tabulator character (\t). Instructions may not be split into

several lines. Comments are indicated by the hash tag (#) as the line’s first character. A

template is applied for each single 64-bit word separately.

The syntax for the template file (<template_file>) in extended Backus-Naur form is

defined as follows:

<template_file> := {<instr><newline>}*
<instr> := <comment>|<value_instr>

|<enum_instr>|<header_instr>

|<line_instr>|<newline>

<comment> := "#"<comment string>

<value_instr> := "value"<tab>+<value_name><tab>+

<bit_pos><tab>+<bit_num>

[<tab>+<enum_identifier>]

<enum_instr> := "enum"<tab>+<enum_identifier>

(<tab>+<enum_ordinal><tab>+<enum_str>)+

<header_instr> := "header"<tab>+<format_string>

<line_instr> := "line"<tab>+<format_string>

<bit_pos> := 0..63

<bit_num> := 0..63

<enum_identifier> := <string without tabulator key>

<enum_str> := <string without tabulator key>

<enum_ordinal> := 0..2^64-1

<value_name> := <string without tabulator key>

<tab> := <the tabulator character (\t)>

<newline> := <the newline character (\n)>

<format_string> := <string with format directives >

The instructions are interpreted as follows:

value

The first argument is used as name string for the headline instruction. The

second argument specifies the word’s bit offset o. The number of bits n is set by

the third argument. Each current 64-bit word is shifted by o bits to the right and

the n rightmost bits are used to form a new n-bit value. This new value is used

for the line instruction. In case the optional enum identifier is specified as fourth

argument, this identifier is expected to be either defined using the enum instruction,

or has to be a predefined enum identifier.

2023Q2/c94a45c0 6

Predefined enum identifiers are binary and index. The binary identifier for-

mats the n-bit value as a binary string with length n. When using index as enum

identifier, the n-bit value is replaced by a 64-bit value representing the word index

within a sequence of words that is going to be printed.

enum

The first argument is used as enum identifier. All further arguments are interpreted

as pairs where the first pair element is an enum ordinal and the second one an

enum string. Enum ordinals have to be unique with respect to this enum instruction.

If a value has been defined to be interpreted as enum value, the corresponding n-bit

value is used to look up that enum string whose enum ordinal matches this n-bit

value. The resulting enum string is then used as string value for the line instruction

(see below).

header

The only argument for the header instruction is a format string similar to the one

used for the commonly known printf function (see man 3 printf). Within this

format string, all string directives are replaced by the name strings defined by the

value instructions in the order of their definitions. In other words: the first string

directive is replaced by the first value’s name string, the second string directive

is replaced by the second value’s name string and so on. The format string may

not have other directives than string directives. Furthermore, the number of string

directives has to match the number of value definitions.

line

The line instruction is interpreted in a similar way as the header instruction. All

format directives are respectively replaced by the n-bit value defined by each value

instruction in the order of their definitions. A format directive may be a long integer

directive like %lu, %ld, %lx or derivative directives. In case the corresponding

value instruction refers to an enum identifier which is not index, a string directive

has to be used for that value.

Within the whole template file the header and line instructions may be used once, only.

Example:

value No. 0 0 index

value dec 0 8

value hex 0 8

value bin 0 8 binary

value in words 0 8 enum_id_in_words

enum enum_id_in_words 0 zero 1 one 2 two

header %-7s some text %-8s %-8s %-10s %-8s

line [%5lu] %-8lu 0x%-06lx %-10s %-8s

For this example the words 0, 1, 2, 3 are printed this way:

No. some text dec hex bin in words

[0] 0 0x0 00000000 zero

[1] 1 0x1 00000001 one

[2] 2 0x2 00000010 two

[3] 3 0x3 00000011 UNDEF

2023Q2/c94a45c0 7

The default template file used in se_mon is defined as follows:

value No. 0 0 index

value dec 0 64

value hex 0 64

value bin 56 56 8 binary

value 48 48 8 binary

value 40 40 8 binary

value 32 32 8 binary

value 24 24 8 binary

value 16 16 8 binary

value 8 8 8 binary

value 0 0 8 binary

header %-7s%21s %-18s %8s %8s %8s %8s %8s %8s %8s %8s

line [%5lu]%21lu %-18.16lX %8s %8s %8s %8s %8s %8s %8s %8s

For the same input words 0, . . . , 3, the output is:

No. dec hex bin 56 48

40 32 24 16 8 0

[0] 0 0000000000000000 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000000

[1] 1 0000000000000001 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000001

[2] 2 0000000000000002 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000010

[3] 3 0000000000000003 00000000 00000000

00000000 00000000 00000000 00000000 00000000 00000011

2023Q2/c94a45c0 8

5 Supported commands

Within this chapter all supported commands are described in detail. These commands may

be used directly in the interactive mode of se_mon or within a batch file.

5.1 allocMachine

Usage:

allocMachine [MACHINE_INDEX]

Aliases: alloc, am

Description: Allocates the currently selected machine or the machine with optionally given

machine index MACHINE_INDEX. The currently selected machine may be changed using

the goto command (see section 5.26).

Example 1: This is a successful invocation for the currently selected machine with index 0:

Machine=0 Contr=0 Slot=0 FPGA=0 > allocMachine

0m0.037s (allocMachine)

Machine=0 Contr=0 Slot=0 FPGA=0 >

Example 2: This is an unsuccessful invocation for the currently selected machine with index

0:

Machine=0 Contr=0 Slot=0 FPGA=0 > allocMachine

Machine 0 is locked for usage: user: johndoe, command: se_mon, pid: 856084

Error: SciEngines API returned "SeApiMachineInUse" (4)!

0m0.196s (allocMachine)

Machine=0 Contr=0 Slot=0 FPGA=0 >

5.2 deprogram

Usage:

deprogram

Aliases: dp

Description: Deprograms FPGA(s) at currently selected address. See section 5.26 for

changing the currently selected address.

Example: Deprogram all FPGAs on all cards.

Machine=0 Contr=0 Slot=* FPGA=* > deprogram

0m0.037s (deprogram)

Machine=0 Contr=0 Slot=* FPGA=* >

5.3 flush

Usage:

flush

Aliases: f

Description: Flushes currently buffered data for currently selected controller in the selected

machine. flush waits at most as long as timeout was set, which is 1000ms by default

(see section 5.32), until all buffered data has been completely written. See section 5.26 for

changing the currently selected address.

2023Q2/c94a45c0 9

Example:

Machine=0 Contr=0 Slot=0 FPGA=6 > flush

Machine=0 Contr=0 Slot=0 FPGA=6 >

5.4 freeMachine

Usage:

freeMachine [MACHINE_INDEX]

Aliases: free, fm

Description: Deallocates the currently selected machine or the machine with optionally given

machine index MACHINE_INDEX. All unread words are discarded and all user FPGAs are

deprogrammed. The currently selected machine may be changed using the goto command

(see section 5.26).

Example:

Machine=0 Contr=0 Slot=0 FPGA=0 > freeMachine

0m0.015s (freeMachine)

Machine=0 Contr=0 Slot=0 FPGA=0 >

5.5 getControllerCount

Usage:

getControllerCount [MACHINE_INDEX]

Aliases: ControllerCount, cc

Description: Returns the number of controllers for the currently selected machine or the

machine with optionally given machine index MACHINE_INDEX. The currently selected

machine may be changed using the goto command (see section 5.26).

Example:

Machine=0 Contr=0 Slot=0 FPGA=0 > getControllerCount

1

Machine=0 Contr=0 Slot=0 FPGA=0 >

5.6 getControllerInfo

Usage:

getControllerInfo [CONTROLLER_INDEX]

Aliases: ControllerInfo, ci

Description: Returns information about the currently selected controller within the currently

selected machine. Optionally, a controller index CONTROLLER_INDEX may be specified.

The currently selected machine may be changed using the goto command (see section

5.26).

Example: Get first controller’s information.

Machine=0 Contr=0 Slot=0 FPGA=0 > getControllerInfo

-- Driver name : remote

-- Machine Slot : 0

-- Serial : 0xC57

Machine=0 Contr=0 Slot=0 FPGA=0 >

2023Q2/c94a45c0 10

5.7 getFPGACount

Usage:

getFPGACount

Aliases: FPGACount, fc

Description: Returns the number of FPGAs for the currently selected machine and slot. See

section 5.26 for changing the currently selected address.

Example:

Machine=0 Contr=0 Slot=0 FPGA=0 > getFPGACount

8

Machine=0 Contr=0 Slot=0 FPGA=0 >

5.8 getFPGAInfo

Usage:

getFPGAInfo

Aliases: FPGAInfo, fi

Description: Returns information about the FPGA at the currently selected address. See

section 5.26 for changing the currently selected address.

Example:

Machine=0 Contr=0 Slot=0 FPGA=0 > getFPGAInfo

-- Type : XC6SLX150-3FGG676

-- Programmed : true

-- Firmware version : 01.92.01

-- Firmware build : 1129

0m0.008s (getFPGAInfo)

Machine=0 Contr=0 Slot=0 FPGA=0 >

5.9 getMachineCount

Usage:

getMachineCount

Aliases: MachineCount, mc

Description: Returns the number of machines.

Example:

Machine=0 Contr=0 Slot=0 FPGA=0 > getMachineCount

1

Machine=0 Contr=0 Slot=0 FPGA=0 >

5.10 getSlotCount

Usage:

getSlotCount [MACHINE_INDEX]

Aliases: SlotCount, sc

Description: Returns the number of slots in the currently selected machine or the machine

with optionally given machine index MACHINE_INDEX. The currently selected machine may

be changed using the goto command (see section 5.26).

2023Q2/c94a45c0 11

Example:

Machine=0 Contr=0 Slot=0 FPGA=0 > getSlotCount

16

Machine=0 Contr=0 Slot=0 FPGA=0 >

5.11 getSlotInfo

Usage:

getSlotInfo

Aliases: SlotInfo, si

Description: Returns information about the card at the currently selected slot and machine

address. See section 5.26 for changing the currently selected address.

Example:

Machine=0 Contr=0 Slot=0 FPGA=0 > getSlotInfo

-- Serial : 0xc57

-- FPGA Count : 8

-- is Controller : true

-- Controller index : 0

-- Prev Controller index : 0

-- Next Controller index : 0

-- Firmware version : 01.91.11

-- Firmware build : 1091

-- Hardware revision : 3.7

Machine=0 Contr=0 Slot=0 FPGA=0 >

5.12 getProgInfo

Usage:

getProgInfo

Aliases: ProgInfo, pi

Description: Returns last programming information about the card at the currently selected

slot and machine address. See section 5.26 for changing the currently selected address.

5.13 getTemperature

Usage:

getTemperature

Aliases: temperature, temp

Description: Returns a card’s current temperature for the currently selected slot and machine

address as well as the highest temperature ever measured. See section 5.26 for changing

the currently selected address.

Example: Get the current and highest recorded temperatures for the currently selected

machine index and slot address.

Machine=0 Contr=0 Slot=0 FPGA=0 > getTemperature

current: 20.0

max: 69.0

0m0.003s (getTemperature)

Machine=0 Contr=0 Slot=0 FPGA=0 >

2023Q2/c94a45c0 12

5.14 program

Usage:

program PROGRAM_FILE

Aliases: p

Description: Program FPGA(s) with PROGRAM_FILE at currently selected address. PROGRAM_FILE

may be a .bit file, an .rbt or a .sim file. See section 5.26 for changing the currently selected

address. Please keep in mind that all FPGAs on a slot have to be programmed since the

FPGAs form a ring on a card and would be unable to communicate otherwise.

Example 1: Programming only one FPGA will result in an error because the card’s ring is

not set up completely.

Machine=0 Contr=0 Slot=0 FPGA=0 > program pingpong_top.bit

Programming a single FPGA.

[SciEngines RIVYERA API] FPGAs at slot 0 in machine 0 are programmed but do not react

(after 2160392 bytes)!

Error: SciEngines API returned "SeApiFailed" (1)!

0m5.643s (program)

Machine=0 Contr=0 Slot=0 FPGA=0 >

Example 2: Use goto (see section 5.26) to set all slots and all FPGAs as target.

Machine=0 Contr=0 Slot=0 FPGA=0 > goto * *
Machine=0 Contr=0 Slot=* FPGA=* > program pingpong_top.bit

0m0.568s (program)

Machine=0 Contr=0 Slot=* FPGA=* >

5.15 readActive

Usage:

readActive REG_ADDRESS NUM_WORDS [FILE [--overwrite|--append|--cancel]]

Aliases: ra

Description: Reads NUM_WORDS 64bit word(s) from given source register address REG_ADDRESS,

from currently selected address using the active mode. See section 5.26 for changing the

currently selected address. If no data is present, readActive waits at most as long as

the timeout was set, which is 1000ms by default (see section 5.32). If FILE is provided, the

read words are saved to file FILE. If FILE already exists, the user is interactively asked to

append the data to the file, overwrite it or to cancel. If FILE is not provided, the read words

are printed out in decimal, hexadecimal and binary form.

Example: Actively reading ten words from currently set address, register 0.

Machine=0 Contr=0 Slot=0 FPGA=6 > readActive 0 10

No. dec hex bin 56 48 40 32

24 16 8 0

[0] 0 0000000000000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

[1] 1736515902335221724 181958034181FFDC 00011000 00011001 01011000 00000011

01000001 10000001 11111111 11011100

[2] 3473031804670443449 3032B0068303FFB9 00110000 00110010 10110000 00000110

10000011 00000011 11111111 10111001

[3] 6946063609340886898 6065600D0607FF72 01100000 01100101 01100000 00001101

00000110 00000111 11111111 01110010

[4] -4554616855027777820 C0CAC01A0C0FFEE4 11000000 11001010 11000000 00011010

00001100 00001111 11111110 11100100

[5] -9109233710055555639 81958034181FFDC9 10000001 10010101 10000000 00110100

00011000 00011111 11111101 11001001

[6] 228276653598440338 032B0068303FFB92 00000011 00101011 00000000 01101000

00110000 00111111 11111011 10010010

[7] 456553307196880677 065600D0607FF725 00000110 01010110 00000000 11010000

01100000 01111111 11110111 00100101

[8] 913106614393761355 0CAC01A0C0FFEE4B 00001100 10101100 00000001 10100000

11000000 11111111 11101110 01001011

[9] 1826213228787522710 1958034181FFDC96 00011001 01011000 00000011 01000001

10000001 11111111 11011100 10010110

Read 10 words.

0m0.003s (readActive)

Machine=0 Contr=0 Slot=0 FPGA=6 >

2023Q2/c94a45c0 13

5.16 readPassive

Usage:

readPassive REG_ADDRESS NUM_WORDS [FILE [--overwrite|--append|--cancel]]

Aliases: read, r, rp

Description: Reads NUM_WORDS 64bit word(s) from given source register address REG_ADDRESS,

from currently selected address using the passive mode. See section 5.26 for changing the

currently selected address. If no data is present, readPassive waits at most as long as

the timeout was set, which is 1000ms by default (see section 5.32). If FILE is provided, the

read words are saved to file FILE. If FILE already exists, the user is interactively asked to

append the data to the file, overwrite it or to cancel. If FILE is not provided, the read words

are printed out in decimal, hexadecimal and binary form.

Example: Passively reading five words from currently set address, register 2.

Machine=0 Contr=0 Slot=0 FPGA=6 > readPassive 2 5

No. dec hex bin 56 48 40 32

24 16 8 0

[0] 17544 0000000000004488 00000000 00000000 00000000 00000000

00000000 00000000 01000100 10001000

[1] 48815 000000000000BEAF 00000000 00000000 00000000 00000000

00000000 00000000 10111110 10101111

[2] 42 000000000000002A 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00101010

[3] 47 000000000000002F 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00101111

[4] 57050 000000000000DEDA 00000000 00000000 00000000 00000000

00000000 00000000 11011110 11011010

Read 5 words.

Machine=0 Contr=0 Slot=0 FPGA=6 >

5.17 readRequest

Usage:

readRequest REG_ADDRESS NUM_WORDS

Aliases: rr

Description: Requests to read NUM_WORDS 64bit word(s) from given register address

REG_ADDRESS from currently selected address. See section 5.26 for changing the currently

selected address. The FPGA is then instructed to send NUM_WORDS 64bit word(s) back to

the host who may read the data via readPassive (see section 5.16). A readRequest in

conjunction with readPassive is equal to readActive.

Example: Send two read requests each with three words to currently set address, register

0 and passively read the replies afterwards.

Machine=0 Contr=0 Slot=0 FPGA=6 > readRequest 0 5

Machine=0 Contr=0 Slot=0 FPGA=6 >

Machine=0 Contr=0 Slot=0 FPGA=6 > readRequest 0 5

Machine=0 Contr=0 Slot=0 FPGA=6 >

Machine=0 Contr=0 Slot=0 FPGA=6 > readPassive 0 10

No. dec hex bin 56 48 40 32

24 16 8 0

[0] 0 0000000000000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

[1] 1736515902335221724 181958034181FFDC 00011000 00011001 01011000 00000011

01000001 10000001 11111111 11011100

[2] 3473031804670443449 3032B0068303FFB9 00110000 00110010 10110000 00000110

10000011 00000011 11111111 10111001

[3] 6946063609340886898 6065600D0607FF72 01100000 01100101 01100000 00001101

00000110 00000111 11111111 01110010

[4] -4554616855027777820 C0CAC01A0C0FFEE4 11000000 11001010 11000000 00011010

00001100 00001111 11111110 11100100

[5] 0 0000000000000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000

[6] -9109233710055555639 81958034181FFDC9 10000001 10010101 10000000 00110100

00011000 00011111 11111101 11001001

[7] 228276653598440338 032B0068303FFB92 00000011 00101011 00000000 01101000

00110000 00111111 11111011 10010010

[8] 456553307196880677 065600D0607FF725 00000110 01010110 00000000 11010000

01100000 01111111 11110111 00100101

2023Q2/c94a45c0 14

[9] 913106614393761355 0CAC01A0C0FFEE4B 00001100 10101100 00000001 10100000

11000000 11111111 11101110 01001011

Read 10 words.

0m0.003s (readPassive)

Machine=0 Contr=0 Slot=0 FPGA=6 >

5.18 waitForData

Usage:

waitForData [-g][-r [FILE] [-a] [-n MAX_NUM_WORDS] [--overwrite|--append|--cancel]]

Aliases: wfd

Description: Waits for incoming data at the currently selected controller and machine and

returns the address the data originates from and the number of 64-bit words. If no data is

present, waitForData waits at most as long as the timeout was set, which is 1000ms by

default (see section 5.32). The currently selected machine may be changed using the goto

command (see section 5.26). See section 5.26 for changing the currently selected address.

Keep in mind there may have been more words available than indicated by waitForData,

because more data may have arrived just after the command’s completion. If the -g switch is

set, waitForData switches the current address to the returned address. When providing

the -r switch, all data is read from the returned address and written to the file FILE if

provided or otherwise printed out. If provided FILE already exists, the user is interactively

asked to append the data to the file, overwrite it or to cancel. If, additionally to -r, also -a is

provided, waitForData is executed in a loop until there is no more data present within the

timeout. Option -n makes waitForData read at most MAX_NUM_WORDS words if also -r

is specified.

Example 1: In this example there are five 64-bit words at machine 0, controller 0, slot 0,

FPGA 6 and data register 2.

Machine=0 Contr=0 Slot=0 FPGA=0 > waitForData

m0 c0 s0 f6 r2 with 5 words

Machine=0 Contr=0 Slot=0 FPGA=0 >

Example 2: Use the -g parameter to instruct waitForData to change the currently

selected address to the one with incoming data.

Machine=0 Contr=0 Slot=0 FPGA=0 > waitForData -g

m0 c0 s0 f6 r2 with 5 words

Machine=0 Contr=0 Slot=0 FPGA=6 >

5.19 write

Usage:

write REG_ADDRESS [VALUE [VALUE ...]]

write REG_ADDRESS {--file|-f} FILE [-o OFFSET] [-n NUM_WORDS]

Aliases: w

Description: Writes one or more values to given register address REG_ADDRESS at currently

selected address using the write command (which is CMD_WR in the FPGA design).

Alternatively, a file’s content may be sent if FILE is provided. If the target is not ready to

receive data or there is much data to be transferred, it might be necessary to set the timeout

to a higher value (see section 5.32). If options -o or -n are specified, then OFFSET words

are skipped from file and at most NUM_WORDS are written. See section 5.26 for changing

the currently selected address.

2023Q2/c94a45c0 15

Example 1:

Machine=0 Contr=0 Slot=0 FPGA=6 > write 2 0x4488

Wrote 1 words.

Machine=0 Contr=0 Slot=0 FPGA=6 >

Example 2:

Machine=0 Contr=0 Slot=0 FPGA=6 > write 2 -f dumpfile

Wrote 4 words.

Machine=0 Contr=0 Slot=0 FPGA=6 >

5.20 alias

Usage:

alias [COMMAND]

Aliases: a

Description: Most commands have aliases to make them shorter and easier to handle.

When executing this command without argument, a list of all commands is printed out.

Otherwise only the alias for COMMAND is printed. Aliases are predefined and may not be

altered, created or deleted.

Example 1: This is an invocation with allocMachine as command argument:

Machine=0 Contr=0 Slot=0 FPGA=0 > alias allocMachine

allocMachine: alloc am

Machine=0 Contr=0 Slot=0 FPGA=0 >

Example 2: This is an invocation without any command argument:

Machine=0 Contr=0 Slot=0 FPGA=0 > alias

allocMachine : alloc am

deprogram : dp

flush : f

freeMachine : free fm

getControllerCount : ControllerCount cc

getControllerInfo : ControllerInfo ci

getFPGACount : FPGACount fc

getFPGAInfo : FPGAInfo fi

getMachineCount : MachineCount mc

getSlotCount : SlotCount sc

getSlotInfo : SlotInfo si

getProgInfo : ProgInfo pi

getTemperature : temperature temp

program : p

readActive : ra

readPassive : read r rp

readRequest : rr

waitForData : wfd

write : w

alias : a

batch : b

batchLoop : bl

breakPoint : break bp

fileRead : fr

fileWrite : fw

goto : g

help : h ?

options : o

template :

quit : q exit

sleep :

timeout : t

Machine=0 Contr=0 Slot=0 FPGA=0 >

2023Q2/c94a45c0 16

5.21 batch

Usage:

batch [BATCH_FILE]

Aliases: b

Description: Executes BATCH_FILE as batch file. Batch files are plaintext ASCII files

containing a batch of commands that are all executed one by one. If an error occurs, the

execution is interrupted unless se_mon was started with switch --ignoreerrors. Batch

files may also be executed using the command line argument --batch at se_mon start

time.

Example:

Machine=0 Contr=0 Slot=0 FPGA=0 > batch test.batch

Machine=0 Contr=0 Slot=0 FPGA=0 > # select first machine, first controller, first slot,

all FPGAs

Machine=0 Contr=0 Slot=0 FPGA=0 > goto 0 0 0 *
Machine=0 Contr=0 Slot=0 FPGA=* > # allocate currently selected machine

Machine=0 Contr=0 Slot=0 FPGA=* > allocMachine

0m0.034s (allocMachine)

Machine=0 Contr=0 Slot=0 FPGA=* > # program currently selected FPGAs

Machine=0 Contr=0 Slot=0 FPGA=* > # (see previous goto command)

Machine=0 Contr=0 Slot=0 FPGA=* > program pingpong_top.bit

0m0.575s (program)

Machine=0 Contr=0 Slot=0 FPGA=* > # select third programmed FPGAs

Machine=0 Contr=0 Slot=0 FPGA=* > goto 2

Machine=0 Contr=0 Slot=0 FPGA=2 > # write the word 0xdead to currently selected

Machine=0 Contr=0 Slot=0 FPGA=2 > # FPGA, first data register

Machine=0 Contr=0 Slot=0 FPGA=2 > write 0 0xdeda

Wrote 1 words.

Machine=0 Contr=0 Slot=0 FPGA=2 > # wait for incoming data at controller with

Machine=0 Contr=0 Slot=0 FPGA=2 > # index 0 at currently selected machine waitForData 0

Machine=0 Contr=0 Slot=0 FPGA=2 > # read one 64bit word from currently selected

Machine=0 Contr=0 Slot=0 FPGA=2 > # FPGA address, first data register

Machine=0 Contr=0 Slot=0 FPGA=2 > read 0 1

No. dec hex bin 56 48 40 32

24 16 8 0

[0] 57050 000000000000DEDA 00000000 00000000 00000000 00000000

00000000 00000000 11011110 11011010

Read 1 words.

0m0.003s (readPassive)

Machine=0 Contr=0 Slot=0 FPGA=2 > # select first machine, first controller, first slot,

all FPGAs

Machine=0 Contr=0 Slot=0 FPGA=2 > goto 0 0 0 *
Machine=0 Contr=0 Slot=0 FPGA=* > # deprogram currently selected FPGAs

Machine=0 Contr=0 Slot=0 FPGA=* > deprogram

0m0.035s (deprogram)

Machine=0 Contr=0 Slot=0 FPGA=* > # free currently selected machine

Machine=0 Contr=0 Slot=0 FPGA=* > freeMachine

0m0.015s (freeMachine)

Machine=0 Contr=0 Slot=0 FPGA=* >

0m0.662s (batch)

Machine=0 Contr=0 Slot=0 FPGA=* >

5.22 batchLoop

Usage:

batchLoop BATCH_FILE [NUM_CALLS]

Aliases: bl

Description: Executes BATCH_FILE as batch file in a loop. If NUM_CALLS is provided, the

loop is performed NUM_CALLS times, else the number of loops is infinite. If NUM_CALLS is

1, this call is equal to command batch (see section 5.21).

2023Q2/c94a45c0 17

Example:

Machine=0 Contr=0 Slot=0 FPGA=* > batchLoop test.batch 2

0|Machine=0 Contr=0 Slot=0 FPGA=* > # select first machine, first controller, first slot,

all FPGAs

0|Machine=0 Contr=0 Slot=0 FPGA=* > goto 0 0 0 *
0|Machine=0 Contr=0 Slot=0 FPGA=* > # allocate currently selected machine

0|Machine=0 Contr=0 Slot=0 FPGA=* > allocMachine

0m0.034s (allocMachine)

0|Machine=0 Contr=0 Slot=0 FPGA=* > # program currently selected FPGAs

0|Machine=0 Contr=0 Slot=0 FPGA=* > # (see previous goto command)

0|Machine=0 Contr=0 Slot=0 FPGA=* > program pingpong_top.bit

0m0.598s (program)

0|Machine=0 Contr=0 Slot=0 FPGA=* > # select third programmed FPGAs

0|Machine=0 Contr=0 Slot=0 FPGA=* > goto 2

0|Machine=0 Contr=0 Slot=0 FPGA=2 > # write the word 0xdead to currently selected

0|Machine=0 Contr=0 Slot=0 FPGA=2 > # FPGA, first data register

0|Machine=0 Contr=0 Slot=0 FPGA=2 > write 0 0xdeda

Wrote 1 words.

0|Machine=0 Contr=0 Slot=0 FPGA=2 > # wait for incoming data at controller with

0|Machine=0 Contr=0 Slot=0 FPGA=2 > # index 0 at currently selected machine waitForData 0

0|Machine=0 Contr=0 Slot=0 FPGA=2 > # read one 64bit word from currently selected

0|Machine=0 Contr=0 Slot=0 FPGA=2 > # FPGA address, first data register

0|Machine=0 Contr=0 Slot=0 FPGA=2 > read 0 1

No. dec hex bin 56 48 40 32

24 16 8 0

[0] 57050 000000000000DEDA 00000000 00000000 00000000 00000000

00000000 00000000 11011110 11011010

Read 1 words.

0m0.004s (readPassive)

0|Machine=0 Contr=0 Slot=0 FPGA=2 > # select first machine, first controller, first slot,

all FPGAs

0|Machine=0 Contr=0 Slot=0 FPGA=2 > goto 0 0 0 *
0|Machine=0 Contr=0 Slot=0 FPGA=* > # deprogram currently selected FPGAs

0|Machine=0 Contr=0 Slot=0 FPGA=* > deprogram

0m0.035s (deprogram)

0|Machine=0 Contr=0 Slot=0 FPGA=* > # free currently selected machine

0|Machine=0 Contr=0 Slot=0 FPGA=* > freeMachine

0m0.004s (freeMachine)

0|Machine=0 Contr=0 Slot=0 FPGA=* >

1|Machine=0 Contr=0 Slot=0 FPGA=* > # select first machine, first controller, first slot,

all FPGAs

1|Machine=0 Contr=0 Slot=0 FPGA=* > goto 0 0 0 *
1|Machine=0 Contr=0 Slot=0 FPGA=* > # allocate currently selected machine

1|Machine=0 Contr=0 Slot=0 FPGA=* > allocMachine

0m0.036s (allocMachine)

1|Machine=0 Contr=0 Slot=0 FPGA=* > # program currently selected FPGAs

1|Machine=0 Contr=0 Slot=0 FPGA=* > # (see previous goto command)

1|Machine=0 Contr=0 Slot=0 FPGA=* > program pingpong_top.bit

0m0.600s (program)

1|Machine=0 Contr=0 Slot=0 FPGA=* > # select third programmed FPGAs

1|Machine=0 Contr=0 Slot=0 FPGA=* > goto 2

1|Machine=0 Contr=0 Slot=0 FPGA=2 > # write the word 0xdead to currently selected

1|Machine=0 Contr=0 Slot=0 FPGA=2 > # FPGA, first data register

1|Machine=0 Contr=0 Slot=0 FPGA=2 > write 0 0xdeda

Wrote 1 words.

1|Machine=0 Contr=0 Slot=0 FPGA=2 > # wait for incoming data at controller with

1|Machine=0 Contr=0 Slot=0 FPGA=2 > # index 0 at currently selected machine waitForData 0

1|Machine=0 Contr=0 Slot=0 FPGA=2 > # read one 64bit word from currently selected

1|Machine=0 Contr=0 Slot=0 FPGA=2 > # FPGA address, first data register

1|Machine=0 Contr=0 Slot=0 FPGA=2 > read 0 1

No. dec hex bin 56 48 40 32

24 16 8 0

[0] 57050 000000000000DEDA 00000000 00000000 00000000 00000000

00000000 00000000 11011110 11011010

Read 1 words.

0m0.003s (readPassive)

1|Machine=0 Contr=0 Slot=0 FPGA=2 > # select first machine, first controller, first slot,

all FPGAs

1|Machine=0 Contr=0 Slot=0 FPGA=2 > goto 0 0 0 *
1|Machine=0 Contr=0 Slot=0 FPGA=* > # deprogram currently selected FPGAs

1|Machine=0 Contr=0 Slot=0 FPGA=* > deprogram

0m0.035s (deprogram)

1|Machine=0 Contr=0 Slot=0 FPGA=* > # free currently selected machine

1|Machine=0 Contr=0 Slot=0 FPGA=* > freeMachine

0m0.004s (freeMachine)

1|Machine=0 Contr=0 Slot=0 FPGA=* >

0m1.353s (batchLoop)

Machine=0 Contr=0 Slot=0 FPGA=* >

2023Q2/c94a45c0 18

5.23 breakPoint

Usage:

breakPoint [DISPLAY_MESSAGE]

Aliases: break, bp

Description: Sets a breakpoint that may be used within batch files. If a batch file execution

reaches this breakPoint command, its DISPLAY_MESSAGE is printed out, if provided.

The user is then interactively asked whether the execution should be continued or not. If

the execution shall not be continued, only the currently executed batch file is stopped. If the

currently executed batch file was executed by another batch file, then the other batch file is

continued. Also, if the currently executed batch file was executed by batchLoop command

(see section 5.22), the current iteration is stopped, only.

Example:

Machine=0 Contr=0 Slot=0 FPGA=* > breakPoint This is a sample text describing this break

point

This is a sample text describing this break point

Continue batch execution? [y]es, [n]o: y

Machine=0 Contr=0 Slot=0 FPGA=* >

5.24 fileRead

Usage:

fileRead FILE [-o OFFSET] [-n NUM_WORDS]

Aliases: fr

Description: Reads 64-bit word(s) from file FILE and prints them out in decimal, hexadec-

imal and binary form. If options -o or -n are specified, then OFFSET words are skipped

from file and at most NUM_WORDS are printed.

Example:

Machine=0 Contr=0 Slot=0 FPGA=0 > fileRead dumpfile

No. dec hex bin 56 48 40 32

24 16 8 0

[0] 48815 000000000000BEAF 00000000 00000000 00000000 00000000

00000000 00000000 10111110 10101111

[1] 42 000000000000002A 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00101010

[2] 47 000000000000002F 00000000 00000000 00000000 00000000

00000000 00000000 00000000 00101111

[3] 57050 000000000000DEDA 00000000 00000000 00000000 00000000

00000000 00000000 11011110 11011010

Machine=0 Contr=0 Slot=0 FPGA=0 >

5.25 fileWrite

Usage:

fileWrite FILE [--overwrite|--append|--cancel] VALUE [VALUE [VALUE [VALUE ...]]]

Aliases: fw

Description: Writes 64-bit word(s) to file FILE. If VALUE starts with 0x, it is interpreted as

hexadecimal, else it is interpreted as decimal 64-bit word. If FILE already exists, the user is

interactively asked to append the data to the file, overwrite it or to cancel.

2023Q2/c94a45c0 19

Example 1:

Machine=0 Contr=0 Slot=0 FPGA=0 > fileWrite dumpfile 0xbeaf 42

Machine=0 Contr=0 Slot=0 FPGA=0 >

Example 2:

Machine=0 Contr=0 Slot=0 FPGA=0 > fileWrite dumpfile 47 0xdeda

File already present. [o]verwrite, [a]ppend, [c]ancel: a

Machine=0 Contr=0 Slot=0 FPGA=0 >

5.26 goto

Usage:

goto MACHINE_INDEX CONTR_INDEX SLOT_ADDRESS FPGA_ADDRESS

goto CONTR_INDEX SLOT_ADDRESS FPGA_ADDRESS

goto SLOT_ADDRESS FPGA_ADDRESS

goto FPGA_ADDRESS

Aliases: g

Description: Sets the currently selected machine and FPGA address. If all four argu-

ments are provided, the currently selected machine and controller indices as well as

the slot and FPGA addresses are, respectively, set to MACHINE_INDEX, CONTR_INDEX,

SLOT_ADDRESS and FPGA_ADDRESS. If three arguments are provided, the currently se-

lected controller index, as well as the slot and FPGA addresses are set to CONTR_INDEX,

SLOT_ADDRESS and FPGA_ADDRESS, respectively. If two arguments are provided, the cur-

rently selected slot and FPGA addresses are set to SLOT_ADDRESS and FPGA_ADDRESS,

while the currently selected machine and controller indices are not changed. If one argu-

ment is provided, the currently selected FPGA address is set to FPGA_ADDRESS, while

the currently selected machine and controller indices as well as the slot address remain

unchanged. CONTR_INDEX, SLOT_ADDRESS and/or FPGA_ADDRESS may be an asterisk

(*), representing a wildcard addressing all controllers, slots and/or FPGAs. Attention: The

goto command does not check if an address is valid. When setting an invalid address an

error will occur when first executing an API command which uses this invalid address.

Example 1: Set the current address to be machine index 1 (second machine), controller

index 0 (first controller), slot address 2 (third card), FPGA address 3 (fourth FPGA).

Machine=0 Contr=0 Slot=* FPGA=* > goto 1 0 2 3

Machine=1 Contr=0 Slot=2 FPGA=3 >

Example 2: Set the current address to be slot address 5 (sixth card), FPGA address 0 (first

FPGA) while leaving the machine and controller indices unchanged.

Machine=1 Contr=0 Slot=2 FPGA=3 > goto 5 0

Machine=1 Contr=0 Slot=5 FPGA=0 >

Example 3: Set the current address to be machine 0 (first machine), controller index 0 (first

controller), all slots, all FPGAs.

Machine=1 Contr=0 Slot=5 FPGA=0 > goto 0 0 * *
Machine=0 Contr=0 Slot=* FPGA=* >

2023Q2/c94a45c0 20

5.27 help

Usage:

help [COMMAND]

Aliases: h, ?

Description: If COMMAND is provided, usage information about COMMAND is printed out. If

COMMAND is not provided, a list of all commands and a short description is printed out.

Example 1: This is an invocation with allocMachine as command argument:

Machine=0 Contr=0 Slot=0 FPGA=* > help allocMachine

usage:

allocMachine [MACHINE_INDEX]

aliases:

alloc, am

description:

Allocates the currently selected machine or the machine with optionally given machine

index MACHINE_INDEX. The currently selected machine may be changed using the goto

command (see "help goto").

Machine=0 Contr=0 Slot=0 FPGA=* >

Example 2: This is an invocation without any command argument:

Machine=0 Contr=0 Slot=0 FPGA=* > help

available commands:

allocMachine Allocates a machine.

deprogram Deprograms an FPGA.

flush Flushes buffered data

freeMachine Deallocates a machine.

getControllerCount Returns the number of controllers for a machine.

getControllerInfo Returns information about a controller.

getFPGACount Returns the number of FPGAs in a machine.

getFPGAInfo Returns information about an FPGA.

getMachineCount Returns the number of machines.

getSlotCount Returns the number of slots in a machine.

getSlotInfo Returns information about a slot.

getProgInfo Returns last programming information.

getTemperature Returns the temperature for the selected card.

program Programs FPGA(s) with program file.

readActive Reads from a register address using the active mode.

readPassive Reads from a register address using the passive mode.

readRequest Writes a read request.

waitForData Waits for incoming data.

write Writes to a data register using write command.

alias Prints the command aliases.

batch Executes a batch file.

batchLoop Executes a batch file in a loop.

breakPoint Sets a breakpoint.

fileRead Reads values from a file and displays them.

fileWrite Writes values to a file.

goto Sets current address.

help Prints help page.

options Gets or sets options used for allocMachine.

template Changes the template used for printing out values.

quit Quits se_mon.

sleep Sleeps for given time.

timeout Gets or sets timeout.

use help COMMAND to get usage information about COMMAND

Machine=0 Contr=0 Slot=0 FPGA=* >

5.28 options

Usage:

options [SYNC|ASYNC] [NORMAL]

Aliases: o

Description: Invoking options command without arguments, the currently set options are

printed out. To change write behavior to be synchronous or asynchronous, the strings

"SYNC" or "ASYNC" may be used as argument. To change the routing behavior, the

string "NORMAL" may be used as argument. Please refer to the SciEngines Host API

documentation to get to know more about the different write behaviors and routing methods.

2023Q2/c94a45c0 21

These options will have an effect when allocating a machine, only. An already allocated

machine needs to be freed and allocated again for changes to take effect.

Example 1: Setting the write behavior to be synchronous will take effect the next time

allocMachine is used:

Machine=0 Contr=0 Slot=0 FPGA=0 > options sync

Example 2: Without an argument, all currently set options are printed out:

Machine=0 Contr=0 Slot=0 FPGA=0 > options

write behavior: SYNC

routing method: NORMAL

5.29 template

Usage:

template [TEMPLATE_FILE|--reset|-r]

Aliases:

Description: Sets or resets the template file. A template is used for printing values in

a user defined format. If no argument is provided template returns the currently set

template file. If otherwise --reset or -r is provided the template is reset to its default.

When providing a valid template file TEMPLATE_FILE its template definition will be used

within the commands readActive, readPassive, fileRead and waitForData -r.

A template file is valid if it complies with the syntax described in the template section within

the se_mon user documentation.

5.30 quit

Usage:

quit

Aliases: q, exit

Description: Quits se_mon. A shortcut to quit is <CTRL>-<d> on an empty line.

Example:

Machine=0 Contr=0 Slot=0 FPGA=* > quit

5.31 sleep

Usage:

sleep TIME_IN_MS

Aliases:

Description: Sleeps for TIME_IN_MS milliseconds and blocks any interaction while sleep-

ing.

Example: Sleep for three seconds.

Machine=0 Contr=0 Slot=0 FPGA=6 > sleep 3000

0m3.000s (sleep)

Machine=0 Contr=0 Slot=0 FPGA=6 >

2023Q2/c94a45c0 22

5.32 timeout

Usage:

timeout [TIME_IN_MS]

Aliases: t

Description: If TIME_IN_MS is provided, the new timeout value is set to TIME_IN_MS

milliseconds. If TIME_IN_MS is not provided, the currently set timeout is printed out. To set

timeout to be infinite, use an asterisk (*) for TIME_IN_MS. By default, timeout is set to 1000

milliseconds.

Example: Get the currently set timeout, set it to three seconds and get the currently set

timeout again.

Machine=0 Contr=0 Slot=0 FPGA=0 > timeout

2000

Machine=0 Contr=0 Slot=0 FPGA=0 > timeout 3000

Machine=0 Contr=0 Slot=0 FPGA=0 > timeout

3000

Machine=0 Contr=0 Slot=0 FPGA=0 >

2023Q2/c94a45c0 23

6 Third Party Licenses

se_mon uses the linenoise library which has been published under this license:

Copyright (c) 2010-2014, Salvatore Sanfilippo <antirez at gmail dot com>

Copyright (c) 2010-2013, Pieter Noordhuis <pcnoordhuis at gmail dot com>

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation

and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Imprint:

SciEngines GmbH

Am Kiel-Kanal 2

D-24106 Kiel Germany

Phone: +49(0)431-9086-2000

Fax: +49(0)431-9086-2009

E-Mail: info@SciEngines.com

Internet: www.SciEngines.com

CEO: Gerd Pfeiffer

Commercial Register: Amtsgericht Kiel

Commercial Register No.: HR B 9565 KI

VAT-Identification Number: DE 814955925

	General Information
	Overview
	Scope

	Starting se_mon
	Prerequisites
	Executing se_mon
	Command line arguments

	Shell prompt
	Executing a command
	Executing an API command
	Command Completion
	Completing a command name

	History

	Templates
	Supported commands
	allocMachine
	deprogram
	flush
	freeMachine
	getControllerCount
	getControllerInfo
	getFPGACount
	getFPGAInfo
	getMachineCount
	getSlotCount
	getSlotInfo
	getProgInfo
	getTemperature
	program
	readActive
	readPassive
	readRequest
	waitForData
	write
	alias
	batch
	batchLoop
	breakPoint
	fileRead
	fileWrite
	goto
	help
	options
	template
	quit
	sleep
	timeout

	Third Party Licenses

